A206722 Parameters of Chebyshev function psi.
1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1
Offset: 2
Examples
If x = 7, then 2^2, 3^1, 5^1, 7^1 <= x < 2^3, 3^2, 5^2, 7^2, respectively so k = 2, 1, 1, 1, respectively. The table starts in row x=2 with columns n >= 1 as: 1; 1, 1; 2, 1; 2, 1, 1; 2, 1, 1; 2, 1, 1, 1; 3, 1, 1, 1; 3, 2, 1, 1; 3, 2, 1, 1, 1;
Links
- N. Kanti Sinha, On a new property of primes that leads to a generalization of Cramer's conjecture, arXiv:1010.1399 [math.NT], 2010.
- Wikipedia, Chebyshev function
Programs
-
Mathematica
A206722[x_, n_] := Module[{p = Prime[n]}, For[k = 0, True, k++, If[p^(k+1) > x && p^k <= x, Return[k]]]]; Table[DeleteCases[Table[A206722[x, n], {n, 1, 17}], 0], {x, 2, 20}] // Flatten (* Jean-François Alcover, Sep 15 2018, after R. J. Mathar *)
-
Maxima
prime(n) := block( if n = 1 then return(2) else return(next_prime(prime(n-1))) )$ /* very slow recursive definition of A000040 */ A206722(x,n) := block( local(p), p : prime ( n ), for k : 0 do ( if p^(k+1) > x and p^k <= x then return(k) ) )$ for x : 2 thru 20 do ( for n : 1 thru 17 do sprint(A206722(x,n)), newline() )$ /* R. J. Mathar, Feb 14 2012 */
Comments