A206799 Based on an erroneous version of A008614.
4, 1, 0, 2, 4, 3, 4, 4, 4, 5, 4, 6, 8, 7, 8, 8, 8, 9, 12, 10, 12, 15, 12, 12, 16, 17, 16, 18, 20, 19, 20, 20, 24, 25, 24, 26, 28, 27, 28, 32, 32, 33, 36, 34, 36, 39, 40, 40, 44, 45, 44
Offset: 0
Keywords
References
- W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955, section 267, page 363
Crossrefs
Cf. A008616.
Programs
-
Mathematica
(* expansion*) w = Exp[I*2*Pi/7]; p[x_] = FullSimplify[ExpandAll[(4/168)*(1/(1 - x)^3 + 21/((1 - x)*(1 - x^2)) + 42/((1 - x)*(1 + x^2)) + 56/(1 - x^3) + 24/((1 - w*x)*(1 - w^2*x)*(1 - w^4*x)) + 24/((1 - w^6*x)*(1 - x*w^5)*(1 - x*w^3)))]]; a = Table[SeriesCoefficient[Series[FullSimplify[ExpandAll[p[x]]], {x, 0, 50}], n], {n, 0, 50}] (* recursion*) b[1] = 4; b[2] = 1; b[3] = 0; b[4] = 2; b[5] = 4; b[6] = 3; b[7] = 4; b[8] = 4; b[9] = 4; b[10] = 5; b[11] = 4; b[n_Integer?Positive] := b[n] = -489 + 11 n + n^2 - b[-11 + n] - 3 b[-10 + n] - 6 b[-9 + n] - 9 b[-8 + n] - 11 b[-7 + n] - 12 b[-6 + n] - 12 b[-5 + n] - 11 b[-4 + n] - 9 b[-3 + n] - 6 b[-2 + n] - 3 b[-1 + n]; Table[b[n], {n, 1, Length[a]}]
-
PARI
Vec((-4-x+2*x^3+x^4-2*x^5-2*x^6+2*x^7+3*x^8+2*x^9-3*x^11)/(-1+x^3*(1+x-x^7-x^8+x^11))+O(x^9)) \\ Charles R Greathouse IV, Feb 13 2012
Formula
A precise definition is: Take the generating function as given by Burnside, expand as a Taylor series, and multiply by 4.
Expansion of (-4 - x + 2 x^3 + x^4 - 2 x^5 - 2 x^6 + 2 x^7 + 3 x^8 + 2 x^9 - 3 x^11)/(-1 + x^3 (1 + x - x^7 - x^8 + x^11))
Comments