A206813 Position of 3^n in joint ranking of {2^i}, {3^j}, {5^k}.
2, 6, 9, 12, 15, 19, 22, 25, 29, 31, 35, 39, 41, 45, 48, 51, 54, 58, 61, 64, 68, 71, 74, 78, 81, 84, 87, 91, 93, 97, 101, 103, 107, 110, 113, 117, 120, 123, 126, 130, 132, 136, 140, 143, 146, 149, 153, 156, 159, 163, 165, 169, 173, 175, 179, 182, 185, 188
Offset: 1
Keywords
Examples
The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that A205812=(1,3,5,7,10,11,14,...) A205813=(2,6,9,12,15,...) A205814=(4,8,13,18,23,...)
Programs
-
Mathematica
f[1, n_] := 2^n; f[2, n_] := 3^n; f[3, n_] := 5^n; z = 1000; d[n_, b_, c_] := Floor[n*Log[b, c]]; t[k_] := Table[f[k, n], {n, 1, z}]; t = Sort[Union[t[1], t[2], t[3]]]; p[k_, n_] := Position[t, f[k, n]]; Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *) Table[n + d[n, 3, 2] + d[n, 5, 2], {n, 1, 50}] (* A206812 *) Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *) Table[n + d[n, 2, 3] + d[n, 5, 3], {n, 1, 50}] (* A206813 *) Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *) Table[n + d[n, 2, 5] + d[n, 3, 5], {n, 1, 50}] (* A206814 *)
Comments