A206814 Position of 5^n in joint ranking of {2^i}, {3^j}, {5^k}.
4, 8, 13, 18, 23, 27, 33, 37, 42, 47, 52, 56, 62, 66, 70, 76, 80, 85, 90, 95, 99, 105, 109, 114, 119, 124, 128, 134, 138, 142, 147, 152, 157, 161, 167, 171, 176, 181, 186, 190, 196, 200, 204, 210, 214, 219, 224, 229, 233, 239, 243, 248, 253, 258, 262
Offset: 1
Keywords
Examples
The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that A205812=(1,3,5,7,10,11,14,...) A205813=(2,6,9,12,15,...) A205814=(4,8,13,18,23,...)
Programs
-
Mathematica
f[1, n_] := 2^n; f[2, n_] := 3^n; f[3, n_] := 5^n; z = 1000; d[n_, b_, c_] := Floor[n*Log[b, c]]; t[k_] := Table[f[k, n], {n, 1, z}]; t = Sort[Union[t[1], t[2], t[3]]]; p[k_, n_] := Position[t, f[k, n]]; Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *) Table[n + d[n, 3, 2] + d[n, 5, 2], {n, 1, 50}] (* A206812 *) Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *) Table[n + d[n, 2, 3] + d[n, 5, 3], {n, 1, 50}] (* A206813 *) Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *) Table[n + d[n, 2, 5] + d[n, 3, 5], {n, 1, 50}] (* A206814 *)
Comments