A206815 Position of n+pi(n) in the joint ranking of {j+pi(j)} and {k+(k+1)/log(k+1)}.
1, 2, 5, 7, 9, 11, 14, 15, 17, 19, 22, 23, 26, 28, 30, 31, 34, 36, 39, 40, 42, 44, 47, 49, 50, 52, 54, 56, 58, 60, 63, 65, 67, 68, 70, 72, 75, 77, 78, 80, 83, 85, 87, 89, 91, 93, 96, 98, 99, 101, 103, 105, 108, 109, 111, 113, 115, 117, 119, 121, 124, 126, 128
Offset: 1
Keywords
Examples
The joint ranking is represented by 1 < 3 < 3.8 < 4.7 < 5 < 5.8 < 6 <7.1 < 8 < 8.3 < 9 < ... Positions of numbers j+pi(j): 1,2,5,7,9,... Positions of numbers k+(k+1)/log(k+1): 3,4,6,8,10,..
Programs
-
Mathematica
f[1, n_] := n + PrimePi[n]; f[2, n_] := n + N[(n + 1)/Log[n + 1]]; z = 500; t[k_] := Table[f[k, n], {n, 1, z}]; t = Sort[Union[t[1], t[2]]]; p[k_, n_] := Position[t, f[k, n]]; Flatten[Table[p[1, n], {n, 1, z}]] (* A206815 *) Flatten[Table[p[2, n], {n, 1, z}]] (* A206818 *) d1[n_] := p[1, n + 1] - p[1, n] Flatten[Table[d1[n], {n, 1, z - 1}]] (* A206827 *) d2[n_] := p[2, n + 1] - p[2, n] Flatten[Table[d2[n], {n, 1, z - 1}]] (* A206828 *)
Comments