cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A207384 A206815(n+1)-A206815(n).

Original entry on oeis.org

1, 3, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 2, 1, 3, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Feb 17 2012

Keywords

Comments

The sequences A206815, A206818, A207384, A207835 illustrate the closeness of {j+pi(j)} to {k+(k+1)/log(k+1)}, as suggested by the prime number theorem and the conjecture that all the terms of A207384 and A207835 are in the set {1,2,3}.

Examples

			The joint ranking is represented by
1 < 3 < 3.8 < 4.7 < 5 < 5.8 < 6 <7.1 < 8 < 8.3 < 9 < ...
Positions of numbers j+pi(j): 1,2,5,7,9,...
Positions of numbers k+(k+1)/log(k+1): 3,4,6,8,10,..
		

Crossrefs

Programs

  • Mathematica
    f[1, n_] := n + PrimePi[n];
    f[2, n_] := n + N[(n + 1)/Log[n + 1]]; z = 500;
    t[k_] := Table[f[k, n], {n, 1, z}];
    t = Sort[Union[t[1], t[2]]];
    p[k_, n_] := Position[t, f[k, n]];
    Flatten[Table[p[1, n], {n, 1, z}]]    (* A206815 *)
    Flatten[Table[p[2, n], {n, 1, z}]]    (* A206818 *)
    d1[n_] := p[1, n + 1] - p[1, n]
    Flatten[Table[d1[n], {n, 1, z - 1}]]  (* A207385 *)
    d2[n_] := p[2, n + 1] - p[2, n]
    Flatten[Table[d2[n], {n, 1, z - 1}]]  (* A207386 *)

A206911 Position of n-th partial sum of the harmonic series when all the partial sums are jointly ranked with the set {log(k+1)}; complement of A206912.

Original entry on oeis.org

2, 5, 8, 11, 13, 16, 19, 22, 24, 27, 30, 33, 36, 38, 41, 44, 47, 49, 52, 55, 58, 61, 63, 66, 69, 72, 74, 77, 80, 83, 86, 88, 91, 94, 97, 100, 102, 105, 108, 111, 113, 116, 119, 122, 125, 127, 130, 133, 136, 138, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2012

Keywords

Comments

Conjecture: the difference sequence of A206911 consists of 2s and 3s, and the ratio (number of 3s)/(number of 2s) tends to a number between 3.5 and 3.6.
Similar conjectures can be stated for difference sequences based on jointly ranked sets, such as A206903, A206906, A206928, A206805, A206812, and A206815.

Examples

			Let S(n)=1+1/2+1/3+...+1/n and L(n)=log(n+1).  Then
L(1)<S(1)<L(2)<L(3)<S(2)<L(4)<L(5)<S(3)<L(6)<..., so that
A206911=(2,5,8,...).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[1/k, {k, 1, n}];  z = 300;
    g[n_] := N[Log[n + 1]];
    c = Table[f[n], {n, 1, z}];
    s = Table[g[n], {n, 1, z}];
    j = Sort[Union[c, s]];
    p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]];
    Flatten[Table[p[n], {n, 1, z}]]    (* A206911 *)
    Flatten[Table[q[n], {n, 1, z}]]    (* A206912 *)

A206818 Position of n+(n+1)/log(n+1) in the joint ranking of {j+pi(j)} and {k+(k+1)/log(k+1)}.

Original entry on oeis.org

3, 4, 6, 8, 10, 12, 13, 16, 18, 20, 21, 24, 25, 27, 29, 32, 33, 35, 37, 38, 41, 43, 45, 46, 48, 51, 53, 55, 57, 59, 61, 62, 64, 66, 69, 71, 73, 74, 76, 79, 81, 82, 84, 86, 88, 90, 92, 94, 95, 97, 100, 102, 104, 106, 107, 110, 112, 114, 116, 118, 120, 122, 123
Offset: 1

Views

Author

Clark Kimberling, Feb 17 2012

Keywords

Comments

The sequences A206815, A206818, A206827, A206828 illustrate the closeness of {j+pi(j)} to {k+(k+1)/log(k+1)}, as suggested by the prime number theorem and the conjecture that all the terms of A206827 and A206828 are in the set {1,2,3}.

Examples

			The joint ranking is represented by
1 < 3 < 3.8 < 4.7 < 5 < 5.8 < 6 <7.1 < 8 < 8.3 < 9 < ...
Positions of numbers j+pi(j): 1,2,5,7,9,...
Positions of numbers k+(k+1)/log(k+1): 3,4,6,8,10,..
		

Crossrefs

Cf. A000720, A206827, A206815 (complement of A206818).

Programs

  • Mathematica
    f[1, n_] := n + PrimePi[n];
    f[2, n_] := n + N[(n + 1)/Log[n + 1]]; z = 500;
    t[k_] := Table[f[k, n], {n, 1, z}];
    t = Sort[Union[t[1], t[2]]];
    p[k_, n_] := Position[t, f[k, n]];
    Flatten[Table[p[1, n], {n, 1, z}]]    (* A206815 *)
    Flatten[Table[p[2, n], {n, 1, z}]]    (* A206818 *)
    d1[n_] := p[1, n + 1] - p[1, n]
    Flatten[Table[d1[n], {n, 1, z - 1}]]  (* A206827 *)
    d2[n_] := p[2, n + 1] - p[2, n]
    Flatten[Table[d2[n], {n, 1, z - 1}]]  (* A206828 *)

A207385 A206818(n+1)-A206818(n).

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 17 2012

Keywords

Comments

The sequences A206815, A206818, A207384, A207835 illustrate the closeness of {j+pi(j)} to {k+(k+1)/log(k+1)}, as suggested by the prime number theorem and the conjecture that all the terms of A207384 and A207835 are in the set {1,2,3}.

Examples

			The joint ranking is represented by
1 < 3 < 3.8 < 4.7 < 5 < 5.8 < 6 <7.1 < 8 < 8.3 < 9 < ...
Positions of numbers j+pi(j): 1,2,5,7,9,...
Positions of numbers k+(k+1)/log(k+1): 3,4,6,8,10,..
		

Crossrefs

Programs

  • Mathematica
    f[1, n_] := n + PrimePi[n];
    f[2, n_] := n + N[(n + 1)/Log[n + 1]]; z = 500;
    t[k_] := Table[f[k, n], {n, 1, z}];
    t = Sort[Union[t[1], t[2]]];
    p[k_, n_] := Position[t, f[k, n]];
    Flatten[Table[p[1, n], {n, 1, z}]]    (* A206815 *)
    Flatten[Table[p[2, n], {n, 1, z}]]    (* A206818 *)
    d1[n_] := p[1, n + 1] - p[1, n]
    Flatten[Table[d1[n], {n, 1, z - 1}]]  (* A207385 *)
    d2[n_] := p[2, n + 1] - p[2, n]
    Flatten[Table[d2[n], {n, 1, z - 1}]]  (* A207386 *)
Showing 1-4 of 4 results.