cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206854 Smallest integer m such that m is a product of 2n-1 consecutive primes and a sum of 2n-1 consecutive primes.

Original entry on oeis.org

2, 33263, 2775683761181, 52139749485151463, 31359251876786281892441299570699, 2385018819218440287149, 23509572623777698757692123744388316389653416929069870587, 436178570920976645136650311902311012102337977560516289614008518576769313, 166345108784858794943225366868487068031523855419640057875257310044811
Offset: 1

Views

Author

Zak Seidov, Feb 13 2012

Keywords

Comments

n=1: m = 2 (trivial case: product and sum of single prime, 2);
n=2: m = 33263 = product{29, 31, 37} = sum{11083, 11087, 11093};
n=3: m = 2775683761181 = product({293, 307, 311, 313, 317}) = sum({555136752211, 555136752221, 555136752227, 555136752251, 555136752271});
n=4: m = 52139749485151463=product({229, 233, 239, 241, 251, 257, 263})= sum({7448535640735789, 7448535640735843, 7448535640735867, 7448535640735877, 7448535640735991, 7448535640736009, 7448535640736087});
n=5: m = 31359251876786281892441299570699 = product({3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191}) = sum({3484361319642920210271255507593, 3484361319642920210271255507619, 3484361319642920210271255507719, 3484361319642920210271255507767, 3484361319642920210271255507923, 3484361319642920210271255507937, 3484361319642920210271255507941, 3484361319642920210271255508067, 3484361319642920210271255508133});
n=6: m = 2385018819218440287149 = product({67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109}) = sum({216819892656221844131, 216819892656221844133, 216819892656221844139, 216819892656221844169, 216819892656221844307, 216819892656221844331, 216819892656221844347, 216819892656221844373, 216819892656221844397, 216819892656221844401, 216819892656221844421}).

Crossrefs

Cf. A203619.

Programs

  • Maple
    scp:= proc(x,n) local P,i,s;
      P:= Vector(n);
      P[1]:= nextprime(ceil(x/n));
      for i from 2 to n do P[i]:= nextprime(P[i-1]) od;
      s:= convert(P,`+`);
      while s > x do
        s:= s - P[n];
        P[2..n]:= P[1..n-1];
        if P[2] = 2 then return false fi;
        P[1]:= prevprime(P[2]);
        s:= s + P[1];
      od;
      evalb(s=x)
    end proc:
    f:= proc(n) local i,P,r;
         P:= ;
         r:= convert(P,`*`);
         while not scp(r,2*n-1) do
           r:= r/P[1];
           P[1..2*n-2]:= P[2..2*n-1];
           P[2*n-1]:= nextprime(P[2*n-2]);
           r:= r*P[2*n-1];
         od;
    end proc:
    f(1):= 2:
    map(f, [$1..8]); # Robert Israel, Mar 13 2023

Extensions

a(7)-a(9) from Robert Israel, Mar 13 2023