A206854 Smallest integer m such that m is a product of 2n-1 consecutive primes and a sum of 2n-1 consecutive primes.
2, 33263, 2775683761181, 52139749485151463, 31359251876786281892441299570699, 2385018819218440287149, 23509572623777698757692123744388316389653416929069870587, 436178570920976645136650311902311012102337977560516289614008518576769313, 166345108784858794943225366868487068031523855419640057875257310044811
Offset: 1
Keywords
Crossrefs
Cf. A203619.
Programs
-
Maple
scp:= proc(x,n) local P,i,s; P:= Vector(n); P[1]:= nextprime(ceil(x/n)); for i from 2 to n do P[i]:= nextprime(P[i-1]) od; s:= convert(P,`+`); while s > x do s:= s - P[n]; P[2..n]:= P[1..n-1]; if P[2] = 2 then return false fi; P[1]:= prevprime(P[2]); s:= s + P[1]; od; evalb(s=x) end proc: f:= proc(n) local i,P,r; P:=
; r:= convert(P,`*`); while not scp(r,2*n-1) do r:= r/P[1]; P[1..2*n-2]:= P[2..2*n-1]; P[2*n-1]:= nextprime(P[2*n-2]); r:= r*P[2*n-1]; od; end proc: f(1):= 2: map(f, [$1..8]); # Robert Israel, Mar 13 2023
Extensions
a(7)-a(9) from Robert Israel, Mar 13 2023
Comments