A206864 Prime numbers of the form Phi_k(m), where k > 2, |m| > 1, and Phi_k(m) is the k-th cyclotomic polynomial evaluated at m.
3, 5, 7, 11, 13, 17, 31, 37, 43, 61, 73, 101, 127, 151, 157, 197, 211, 241, 257, 307, 331, 401, 421, 463, 521, 547, 577, 601, 677, 683, 757, 1093, 1123, 1297, 1483, 1601, 1723, 2551, 2731, 2801, 2917, 2971, 3137, 3307, 3541, 3907, 4357, 4423, 4561, 4831, 5113
Offset: 1
Keywords
Examples
Prime 3 = Phi_6(2); so a(1) = 3; Prime 5 = Phi_4(2), so a(2) = 5; ... Prime 17 = Phi_8(2), so a(6)=17; Primes 19 and 23 are not in A206942; Prime 31 = Phi_5(2), so a(7)=31.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Programs
-
Julia
# Function isA206942 is defined in A206942. L = [n for n in 1:5113 if isprime(ZZ(n)) && isA206942(n)] println(L) # Peter Luschny, Feb 21 2018
-
Mathematica
maxdata = 5200; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/2]; eulerbound = 2*Floor[(Log[2, maxdata])/2 + 0.5]; phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; While[eulergroup = phiinv[eulerbound]; lu = Length[eulergroup]; lu == 0, eulerbound = eulerbound + 2]; t = Select[Range[eulergroup[[Length[eulergroup]]]], EulerPhi[#] <= eulerbound &]; ap = SortBy[t, Cyclotomic[#, 2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Sort[DeleteDuplicates[a]] (* Alternatively: *) isA206864[n_] := If[! PrimeQ[n], Return[False], K = Floor[5.383 Log[n]^1.161]; M = Floor[2 Sqrt[n/3]]; For[k = 3, k <= K, k++, For[x = 2, x <= M, x++, If[n == Cyclotomic[k, x], Return[True]]]]; Return[False] ]; Select[Range[1000], isA206864] (* Peter Luschny, Feb 21 2018 *)
Comments