A206942 Numbers of the form Phi_k(m) with k > 2 and |m| > 1.
3, 5, 7, 10, 11, 13, 17, 21, 26, 31, 37, 43, 50, 57, 61, 65, 73, 82, 91, 101, 111, 121, 122, 127, 133, 145, 151, 157, 170, 183, 197, 205, 211, 226, 241, 257, 273, 290, 307, 325, 331, 341, 343, 362, 381, 401, 421, 442, 463, 485, 507, 521, 530, 547, 553
Offset: 1
Keywords
Examples
a(1) = 3 = Phi_6(2) = Cyclotomic(6,2). a(2) = 5 = Phi_4(2) = Cyclotomic(4,2). ... a(15) = 61 = Phi_5(-3) = Cyclotomic(5,-3).
Links
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Crossrefs
Programs
-
Julia
using Nemo function isA206942(n) if n < 3 return false end R, x = PolynomialRing(ZZ, "x") K = Int(floor(5.383*log(n)^1.161)) # Bounds from M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt for k in 3:K c = cyclotomic(k, x) for m in 2:M n == subst(c, m) && return true end end return false end L = [n for n in 1:553 if isA206942(n)]; print(L) # Peter Luschny, Feb 21 2018
-
Mathematica
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 560; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], EulerPhi[#] <= eb &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an = SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, a = Append[a, cc]]; i = 2; While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a] (* Alternatively: *) isA206942[n_] := If[n < 3, Return[False], K = Floor[5.383 Log[n]^1.161]; M = Floor[2 Sqrt[n/3]]; For[k = 3, k <= K, k++, For[x = 2, x <= M, x++, If[n == Cyclotomic[k, x], Return[True]]]]; Return[False] ]; Select[Range[555], isA206942] (* Peter Luschny, Feb 21 2018 *)
Comments