cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A206942 Numbers of the form Phi_k(m) with k > 2 and |m| > 1.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 17, 21, 26, 31, 37, 43, 50, 57, 61, 65, 73, 82, 91, 101, 111, 121, 122, 127, 133, 145, 151, 157, 170, 183, 197, 205, 211, 226, 241, 257, 273, 290, 307, 325, 331, 341, 343, 362, 381, 401, 421, 442, 463, 485, 507, 521, 530, 547, 553
Offset: 1

Views

Author

Lei Zhou, Feb 13 2012

Keywords

Comments

Phi_k(m) denotes the k-th cyclotomic polynomial evaluated at m.
We can see that for any integer b, b = Phi_2(b-1). However, if we make k>2 and |m|>1, Phi(k,m) are always positive integers that do not traverse the positive integer set.
The Mathematica program can generate this sequence to arbitrary upper bound maxdata without user's chosen of parameters. The parameter determination part of this program is explained in A206864.

Examples

			a(1) = 3 = Phi_6(2) = Cyclotomic(6,2).
a(2) = 5 = Phi_4(2) = Cyclotomic(4,2).
...
a(15) = 61 = Phi_5(-3) = Cyclotomic(5,-3).
		

Crossrefs

Cf. A006511 for phiinv function in the Mathematica program.

Programs

  • Julia
    using Nemo
    function isA206942(n)
        if n < 3 return false end
        R, x = PolynomialRing(ZZ, "x")
        K = Int(floor(5.383*log(n)^1.161)) # Bounds from
        M = Int(floor(2*sqrt(n/3)))        # Fouvry & Levesque & Waldschmidt
        for k in 3:K
            c = cyclotomic(k, x)
            for m in 2:M
                n == subst(c, m) && return true
            end
        end
        return false
    end
    L = [n for n in 1:553 if isA206942(n)]; print(L) # Peter Luschny, Feb 21 2018
  • Mathematica
    phiinv[n_, pl_] :=  Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 560; max =  Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb =  2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], EulerPhi[#] <= eb &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an =  SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, a = Append[a, cc]]; i = 2;  While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]
    (* Alternatively: *)
    isA206942[n_] := If[n < 3, Return[False],
        K = Floor[5.383 Log[n]^1.161]; M = Floor[2 Sqrt[n/3]];
        For[k = 3, k <= K, k++, For[x = 2, x <= M, x++,
            If[n == Cyclotomic[k, x], Return[True]]]];
        Return[False]
    ]; Select[Range[555], isA206942] (* Peter Luschny, Feb 21 2018 *)

A253240 Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
Offset: 0

Views

Author

Eric Chen, Apr 22 2015

Keywords

Comments

Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).

Examples

			Read by antidiagonals:
m\n  0   1   2   3   4   5   6   7   8   9  10  11  12
------------------------------------------------------
0    1   1   1   1   1   1   1   1   1   1   1   1   1
1   -1   0   1   2   3   4   5   6   7   8   9  10  11
2    1   2   3   4   5   6   7   8   9  10  11  12  13
3    1   3   7  13  21  31  43  57  73  91 111 133 157
4    1   2   5  10  17  26  37  50  65  82 101 122 145
5    1   5  31 121 341 781 ... ... ... ... ... ... ...
6    1   1   3   7  13  21  31  43  57  73  91 111 133
etc.
The cyclotomic polynomials are:
n        n-th cyclotomic polynomial
0        1
1        x-1
2        x+1
3        x^2+x+1
4        x^2+1
5        x^4+x^3+x^2+x+1
6        x^2-x+1
...
		

Crossrefs

Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).

Programs

  • Mathematica
    Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
  • PARI
    t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
    t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
    T(m, n) = if(m==0, 1, polcyclo(m, n))
    a(n) = T(t1(n), t2(n))

Formula

T(m, n) = Phi_m(n)

A206944 Numbers Phi_k(m) with integer k > 2, |m| > 1 but k != 2^j (j > 1).

Original entry on oeis.org

3, 7, 11, 13, 21, 31, 43, 57, 61, 73, 91, 111, 121, 127, 133, 151, 157, 183, 205, 211, 241, 273, 307, 331, 341, 343, 381, 421, 463, 507, 521, 547, 553, 601, 651, 683, 703, 757, 781, 813, 871, 931, 993, 1057, 1093, 1111, 1123, 1191, 1261, 1333, 1407, 1483
Offset: 1

Views

Author

Lei Zhou, Feb 13 2012

Keywords

Comments

Phi_k(m) denotes the cyclotomic polynomial numbers Cyclotomic(k,m).
There is a property for Cyclotomic(k,m):
Cyclotomic(k^(j+1),m) = Cyclotomic(k,m^(k^j)).
So actually when k=2^(j+1), j is a positive integer,
Cyclotomic(k,m) = Cyclotomic(2,m^(2^j)) = 1+m^(2^j).
If these cases are excluded from A206942, this sequence is obtained.
This sequence is a subsequence of A206942.
Sequence A059054 is a subsequence of this sequence.
The Mathematica program can generate this sequence to arbitrary boundary maxdata without a user's choice of parameters. The parameter determination part of this program is explained at A206864.

Examples

			a(1) = 3 = Phi(6,2).
5 = Phi(4,2) = Phi(2,4) so excluded.
a(2) = 7 = Phi(3,2).
		

Crossrefs

Programs

  • Mathematica
    phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 1500; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && ((! IntegerQ[Log[2, #]]) || (# <= 2))) &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an = SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata,
      a = Append[a, cc]]; i = 2; While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]

A206945 Prime numbers Phi(k,m) with integer k > 2, |m| > 1, and k != 2^j (j > 1).

Original entry on oeis.org

3, 7, 11, 13, 31, 43, 61, 73, 127, 151, 157, 211, 241, 307, 331, 421, 463, 521, 547, 601, 683, 757, 1093, 1123, 1483, 1723, 2551, 2731, 2801, 2971, 3307, 3541, 3907, 4423, 4561, 4831, 5113, 5419, 5701, 6007, 6163, 6481, 8011, 8191, 9091, 9901, 10303, 11131
Offset: 1

Views

Author

Lei Zhou, Feb 13 2012

Keywords

Comments

Phi(k,m) denotes the cyclotomic polynomial numbers Cyclotomic(k,m).
These are the prime terms of A206944.
A059055 is a subsequence of this sequence.
The Mathematica program can generate this sequence to arbitrary boundary maxdata without a user's choice of parameters. The parameter determination part of this program is explained at A206864.

Examples

			Just taking prime terms from A206944:
A206944(1)=3 is prime, so a(1)=3 ...
		

Crossrefs

Programs

  • Mathematica
    phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 12000; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && ((! IntegerQ[Log[2, #]]) || (# <= 2))) &]; t = SortBy[t, Cyclotomic[#, 2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[t[[i]], m]; cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a]
Showing 1-4 of 4 results.