cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206918 Sum of binary palindromes p < 2^n.

Original entry on oeis.org

0, 1, 4, 16, 40, 136, 328, 1096, 2632, 8776, 21064, 70216, 168520, 561736, 1348168, 4493896, 10785352, 35951176, 86282824, 287609416, 690262600, 2300875336, 5522100808, 18407002696, 44176806472, 147256021576, 353414451784, 1178048172616, 2827315614280
Offset: 0

Views

Author

Hieronymus Fischer, Feb 18 2012

Keywords

Comments

Partial sums of A206917.
Partial sums of A052955(n) terms of A006995; for example: A052955(4)=7, the sum of the first 7 terms of A006995 is 0+1+3+5+7+15+17=40 which equals a(4).

Examples

			a(0) = 0, since p=0 is the only binary palindrome p<2^0;
a(3) = 16, since p=0, 1, 3, 5, 7 are the only binary palindromes < 2^3 and 0+1+3+5+7=16.
		

Crossrefs

See A016116 for the number of binary palindromes between 2^(n-1) and 2^n.
See A052995 for the number of binary palindromes < 2^n.
See A206917 for the sum of binary palindromes between 2^(n-1) and 2^n.

Formula

a(n) = sum(k=0..n, A206917(k)).
a(n) = sum(k=1..A052955(n), A006995(k)).
a(n) = sum(k=1..(1/2)*(5-(-1)^n)*2^floor(n/2)-1, A006995(k)).
a(n) = (8/7)*((3/4)*((4-(-1)^n)/(3+(-1)^n))*2^(3*floor(n/2))-1).
G.f.: x*(1+3*x+4*x^2)/((x-1)*(8*x^2-1)). - Alois P. Heinz, Feb 28 2012