cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206921 Rank of the n-th binary palindrome. The minimal number of iterations A206915(A206915(...A206915(A006995(n))...)) such that the result is not a binary palindrome, a(3)=1.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Hieronymus Fischer, Mar 12 2012

Keywords

Comments

The number of iterations such that A006995(n) = A006995(A006995(A006995(...(A206922(n))...))) [For n<>3].

Examples

			a(1)=2, since A006995(1)=0=A006995(A006995(2)) [==> 2 iterations; 2 is not a binary palindrome];
a(3)=1 by definition;
a(4)=1, since A006995(4)=5=A006995(4) [==> 1 iteration; 4 is not a binary palindrome];
a(7)=3, since A006995(7)=15=A006995(A006995(A006995(4))) [==> 3 iterations; 4 is not a binary palindrome];
		

Crossrefs

Programs

Formula

a(n)=k, where k can be determined by the following iteration: set k=0, p(0)=A006995(n). Repeat while A178225(p(k))==1, set k=k+1, p(k)=A206915(p(k-1)) end repeat [for n<>3].
Recursion for n<>3:
Case 1: a(n)=1, if n is not a binary palindrome;
Case 2: a(n)=a(A206915(n))+1, else.
Formally: a(n)=if (A178225(n)==0) then 1 else a(A206915(n))+1