A206949 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with no 3-element antichain.
0, 0, 0, 3, 24, 135, 657, 2961, 12744, 53244, 218025, 880308, 3518721, 13961727, 55097091, 216546048, 848476296, 3316800555, 12942852624, 50437433079, 196347606849, 763752142233, 2969021213928, 11536374392820, 44809232564673, 173997851613660, 675501426136017
Offset: 0
References
- Richard P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- V. Retakh, S. Serconek and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Wikipedia, Graded poset
- Index entries for linear recurrences with constant coefficients, signature (9,-27,30,-9).
Crossrefs
Programs
-
Mathematica
Join[{0}, LinearRecurrence[{9, -27, 30, -9}, {0, 0, 3, 24}, 40]]
-
Python
def a(n,adict={0:0,1:0,2:0,3:3,4:24}): if n in adict: return adict[n] adict[n]=9*a(n-1)-27*a(n-2)+30*a(n-3)-9*a(n-4) return adict[n]
Comments