cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A206950 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with no 3-element antichain.

Original entry on oeis.org

0, 0, 0, 3, 33, 259, 1762, 11093, 66592, 387264, 2202053, 12314587, 67995221, 371697914, 2015659707, 10859379024, 58190011080, 310409500291, 1649579166385, 8738000970251, 46158910515154, 243260704208613, 1279386591175904, 6716811592446952, 35209193397256085
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. Here, the term uniform used in the sense of Retakh, Serconek and Wilson.

Crossrefs

Cf. A206949 (unique maximal element added.)
Cf. A206947, A206948 (requiring exactly two elements in each rank level above 0 with and without maximal element.)

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{13, -59, 115, -109, 51, -9}, {0, 0, 3, 33, 259, 1762}, 40]]
  • Python
    def a(n,adict={0:0,1:0,2:0,3:3,4:33,5:259,6:1762}):
        if n in adict:
            return adict[n]
        adict[n]=13*a(n-1)-59*a(n-2)+115*a(n-3)-109*a(n-4)+51*a(n-5)-9*a(n-6)
        return adict[n]

Formula

a(n) = 13*a(n-1) - 59*a(n-2) + 115*a(n-3) - 109*a(n-4) + 51*a(n-5) - 9*a(n-6), a(1)=0, a(2)=0, a(3)=3, a(4)=33, a(5)=259, a(6)=1762.
G.f.: (3*x^3-6*x^4+7*x^5-3*x^6)/((-1+7*x-10*x^2+3*x^3)*(-1+6*x-7*x^2+3*x^3)).

A206947 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank above 0.

Original entry on oeis.org

0, 0, 0, 2, 14, 70, 306, 1248, 4888, 18666, 70110, 260414, 959882, 3519232, 12854064, 46824210, 170243566, 618125238, 2242100898, 8126927456, 29442587720, 106626616954, 386046638142, 1397431266222, 5057790129274, 18304064121600, 66237312391776
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

Here, the term uniform used in the sense of Retakh, Serconek and Wilson. Graded is used in terms of Stanley's definition that all maximal chains have the same length n.

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Cf. A206948 (removing unique maximal element.)
Cf. A206949, A206950 (allowing one or two elements in each rank level above 0 with and without maximal element.)

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{8, -21, 20, -5}, {0, 0, 2, 14}, 40]]
  • Python
    def a(n,adict={0:0,1:0,2:0,3:2,4:14}):
        if n in adict:
            return adict[n]
        adict[n]=8*a(n-1)-21*a(n-2)+20*a(n-3)-5*a(n-4)
        return adict[n]

Formula

a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), a(1)=0, a(2)=0, a(3)=2, a(4)=14.
G.f.: (2*(1-x)*x^3)/((1-3*x+x^2)*(1-5*x+5*x^2)).
a(n) = A081567(n-1) - A001906(n).

A206948 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level above 0.

Original entry on oeis.org

0, 0, 0, 2, 19, 131, 791, 4446, 23913, 124892, 638878, 3218559, 16027375, 79093773, 387540260, 1887974063, 9154751912, 44221373872, 212931964415, 1022594028515, 4900116587043, 23437066655010, 111923110602497
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. Here, the term uniform used in the sense of Retakh, Serconek and Wilson.

References

  • R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

a(n) = A086405(n) - A012781(n+1).
Cf. A206947 (unique maximal element added).
Cf. A206949, A206950 (allowing one or two elements in each rank level above 0 with and without maximal element).

Programs

  • Mathematica
    LinearRecurrence[{11, -40, 55, -30, 6}, {0, 0, 0, 2, 19, 131}, 23] (* David Nacin, Feb 29 2012; a(0) added by Georg Fischer, Apr 03 2019 *)
  • Python
    def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:19, 5:131}):
      if n in adict:
        return adict[n]
      adict[n]=11*a(n-1)-40*a(n-2)+55*a(n-3)-30*a(n-4)+6*a(n-5)
      return adict[n]
    for n in range(0,40):
      print(a(n))

Formula

a(n) = 11*a(n-1) - 40*a(n-2) + 55*a(n-3) - 30*a(n-4) + 6*a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=2, a(4)=19, a(5)=131.
G.f.: (x^3*(2 - 3*x + 2*x^2))/((1 - 6*x + 6*x^2)*(1 - 5*x + 4*x^2 - x^3)).
Showing 1-3 of 3 results.