A207024 T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 90, 64, 10, 18, 169, 252, 168, 100, 12, 25, 324, 624, 558, 270, 144, 14, 34, 625, 1350, 1586, 1035, 396, 196, 16, 46, 1156, 3025, 3726, 3315, 1719, 546, 256, 18, 62, 2116, 6256, 9450, 8280, 6123, 2646, 720, 324, 20, 83, 3844
Offset: 1
Examples
Some solutions for n=4, k=3 ..1..0..0....0..1..0....0..0..1....1..0..1....0..0..1....1..1..0....1..1..1 ..1..0..0....1..1..0....1..1..1....0..0..1....0..0..1....1..0..1....1..1..1 ..1..0..0....1..1..0....0..0..1....0..0..1....0..0..1....1..0..1....0..1..0 ..1..0..0....1..0..0....0..0..1....0..0..1....0..0..1....0..0..1....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1984
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 12*n^2 - 6*n
k=4: a(n) = 6*n^3 + (27/2)*n^2 - (21/2)*n
k=5: a(n) = (13/6)*n^4 + 13*n^3 + (52/3)*n^2 - (39/2)*n
k=6: a(n) = (33/4)*n^4 + (45/2)*n^3 + (75/4)*n^2 - (63/2)*n
k=7: a(n) = (55/24)*n^5 + (75/4)*n^4 + (275/8)*n^3 + (75/4)*n^2 - (295/6)*n
Comments