A207034 Sum of all parts minus the number of parts of the n-th partition in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j).
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 9, 6, 7, 7, 8, 7, 8, 8, 9, 8, 8, 9, 9, 9, 10, 6, 7, 7, 8, 8, 8, 9, 8, 9, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 10, 11, 7, 8, 8, 9, 8, 9
Offset: 1
Examples
Illustration of initial terms, n = 1..15. Consider the last 15 rows of the tail of the last section of the set of partitions in colexicographic order of any integer >= 8. The tail contains at least A000041(8-1) = 15 parts of size 1. a(n) is also the number of dots in the n-th row of the diagram. ---------------------------------- n Tail a(n) ---------------------------------- 15 1 . . . . . . 6 14 1 . . . . . 5 13 1 . . . . . 5 12 1 . . . . 4 11 1 . . . . . 5 10 1 . . . . 4 9 1 . . . . 4 8 1 . . . 3 7 1 . . . . 4 6 1 . . . 3 5 1 . . . 3 4 1 . . 2 3 1 . . 2 2 1 . 1 1 1 0 ---------------------------------- Written as a triangle: 0; 1; 2; 2,3; 3,4; 3,4,4,5; 4,5,5,6; 4,5,5,6,6,6,7; 5,6,6,7,6,7,7,8; 5,6,6,7,7,7,8,7,8,8,8,9; 6,7,7,8,7,8,8,9,8,8,9,9,9,10; 6,7,7,8,8,8,9,8,9,9,9,10,8,9,9,10,9,10,10,10,11; ... Consider a matrix [j X A000041(j)] in which the rows represent the partitions of j in colexicographic order (see A211992). Every part of every partition is located in a cell of the matrix. We can see that a(n) is the number of empty cells in row n for any integer j, if A000041(j) >= n. The number of empty cells in row n equals the sum of all parts minus the number of parts in the n-th partition of j. Illustration of initial terms. The smallest part of every partition is located in the last column of the matrix. --------------------------------------------------------- . j: 1 2 3 4 5 6 n a(n) --------------------------------------------------------- 1 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 | . 2 . 2 1 . 2 1 1 . 2 1 1 1 . 2 1 1 1 1 3 2 | . . 3 . . 3 1 . . 3 1 1 . . 3 1 1 1 4 2 | . . 2 2 . . 2 2 1 . . 2 2 1 1 5 3 | . . . 4 . . . 4 1 . . . 4 1 1 6 3 | . . . 3 2 . . . 3 2 1 7 4 | . . . . 5 . . . . 5 1 8 3 | . . . 2 2 2 9 4 | . . . . 4 2 10 4 | . . . . 3 3 11 5 | . . . . . 6 ... Illustration of initial terms. In this case the largest part of every partition is located in the first column of the matrix. --------------------------------------------------------- . j: 1 2 3 4 5 6 n a(n) --------------------------------------------------------- 1 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 | 2 . 2 1 . 2 1 1 . 2 1 1 1 . 2 1 1 1 1 . 3 2 | 3 . . 3 1 . . 3 1 1 . . 3 1 1 1 . . 4 2 | 2 2 . . 2 2 1 . . 2 2 1 1 . . 5 3 | 4 . . . 4 1 . . . 4 1 1 . . . 6 3 | 3 2 . . . 3 2 1 . . . 7 4 | 5 . . . . 5 1 . . . . 8 3 | 2 2 2 . . . 9 4 | 4 2 . . . . 10 4 | 3 3 . . . . 11 5 | 6 . . . . . ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10143
Comments