A207068 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 102, 64, 10, 21, 196, 288, 216, 100, 12, 31, 441, 896, 720, 390, 144, 14, 46, 961, 2499, 2688, 1485, 636, 196, 16, 68, 2116, 6634, 8799, 6398, 2709, 966, 256, 18, 100, 4624, 17848, 27063, 23856, 13132, 4536, 1392, 324, 20, 147
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..1..1....1..1..1....0..1..1....0..0..0....0..1..1....0..0..0....1..0..0 ..1..1..0....1..1..0....1..0..0....1..0..0....0..1..1....0..1..1....0..0..0 ..1..1..0....1..0..0....1..0..0....0..0..0....0..1..1....0..0..0....0..0..0 ..1..0..0....1..0..0....1..0..0....0..0..0....0..1..1....0..0..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1404
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = (3/4)*n^4 + (15/2)*n^3 + (15/4)*n^2 - 3*n
k=5: a(n) = (7/30)*n^5 + 7*n^4 + (21/2)*n^3 - (56/15)*n
k=6: a(n) = (7/120)*n^6 + (147/40)*n^5 + (49/3)*n^4 + (91/8)*n^3 - (707/120)*n^2 - (91/20)*n
k=7: a(n) = (31/2520)*n^7 + (62/45)*n^6 + (4867/360)*n^5 + (2015/72)*n^4 + (1271/180)*n^3 - (4991/360)*n^2 - (713/140)*n
Comments