A207094
Number of 0..2 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 3.
Original entry on oeis.org
3, 6, 12, 26, 55, 115, 239, 498, 1038, 2162, 4502, 9375, 19523, 40655, 84659, 176292, 367107, 764456, 1591886, 3314907, 6902887, 14374415, 29932954, 62331700, 129798109, 270288619, 562842849, 1172051097, 2440652442, 5082358916
Offset: 1
Some solutions for n=5:
..1....0....1....0....0....0....0....0....1....0....1....1....0....0....0....0
..2....1....2....1....1....0....0....2....1....0....2....2....1....1....0....0
..2....1....1....1....2....0....2....2....2....0....1....2....2....2....0....0
..1....2....1....2....2....0....2....1....2....1....0....1....1....1....0....0
..2....2....2....0....1....1....2....2....2....2....1....0....2....0....0....2
A207095
Number of 0..3 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 4.
Original entry on oeis.org
4, 10, 26, 68, 176, 458, 1193, 3103, 8069, 20982, 54556, 141854, 368847, 959072, 2493770, 6484280, 16860367, 43840173, 113992823, 296403114, 770704718, 2003979505, 5210729566, 13548892363, 35229708616, 91603972925, 238187830252
Offset: 1
Some solutions for n=5
..0....2....2....0....2....0....1....2....0....1....2....0....1....0....1....3
..2....3....2....0....3....1....1....3....1....2....2....2....1....0....2....3
..3....1....3....0....2....3....2....3....2....3....2....3....3....3....3....2
..2....3....1....1....3....2....3....3....3....2....3....2....2....3....2....3
..3....2....2....1....1....3....2....2....1....2....3....1....2....3....3....3
A207096
Number of 0..4 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 5.
Original entry on oeis.org
5, 15, 45, 140, 441, 1382, 4322, 13511, 42238, 132051, 412840, 1290698, 4035218, 12615643, 39441343, 123308779, 385510576, 1205254047, 3768086810, 11780485818, 36830320820, 115145720853, 359989724116, 1125466066030, 3518638952555
Offset: 1
Some solutions for n=5
..1....0....1....2....0....0....0....2....1....3....1....0....2....4....1....1
..3....0....4....3....4....0....1....3....3....3....2....2....4....4....4....4
..4....1....1....2....4....2....4....4....4....2....3....4....2....3....1....4
..4....3....2....4....3....4....1....3....2....3....2....3....3....2....0....3
..3....4....4....4....2....1....2....3....2....1....0....2....0....4....1....2
A207097
Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 6.
Original entry on oeis.org
6, 21, 75, 274, 989, 3579, 12964, 46952, 170076, 616065, 2231527, 8083084, 29278684, 106053662, 384149029, 1391469865, 5040201168, 18256685634, 66129616610, 239535602559, 867649138787, 3142810588438, 11383931537547, 41235032657415
Offset: 1
Some solutions for n=5
..4....2....0....0....3....1....1....0....0....2....3....2....2....1....2....2
..4....5....0....1....5....3....1....1....1....5....3....5....2....2....5....2
..2....3....4....5....4....4....3....3....3....2....5....2....5....3....1....4
..0....5....4....4....3....2....5....5....4....5....2....5....4....5....3....4
..4....5....5....5....1....1....2....2....3....3....2....5....4....3....5....2
A207098
Number of 0..6 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 7.
Original entry on oeis.org
7, 28, 112, 462, 1904, 7868, 32531, 134517, 556259, 2300219, 9511719, 39332200, 162643507, 672550879, 2781080236, 11500107101, 47554350602, 196643061212, 813143132135, 3362446402726, 13904127534002, 57495269615906
Offset: 1
Some solutions for n=5:
..2....5....1....2....3....4....5....1....4....4....0....0....1....0....0....4
..6....5....1....3....3....6....5....4....4....5....0....2....3....2....3....6
..6....3....5....6....6....3....4....6....5....2....0....6....4....2....5....4
..6....4....6....5....2....5....4....5....4....1....5....3....2....6....3....6
..5....2....4....4....4....3....5....4....6....3....6....5....6....3....1....3
A207099
Number of 0..7 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 8.
Original entry on oeis.org
8, 36, 164, 760, 3504, 16224, 75114, 347794, 1610482, 7457403, 34531926, 159901992, 740434409, 3428619670, 15876397382, 73516462261, 340421698733, 1576339895161, 7299321618669, 33799877958800, 156512044508653, 724736938606683
Offset: 1
Some solutions for n=5
..6....2....4....4....0....6....4....0....0....1....4....1....3....2....1....4
..7....7....4....5....0....7....5....4....4....6....5....6....6....6....4....4
..5....1....6....3....1....6....6....6....6....7....2....7....2....5....5....2
..7....5....2....0....2....5....4....6....7....5....7....5....6....3....3....7
..5....7....2....5....3....4....3....6....5....4....1....6....7....3....2....4
A207101
Number of 0..n arrays x(0..3) of 4 elements with each no smaller than the sum of its two previous neighbors modulo (n+1).
Original entry on oeis.org
8, 26, 68, 140, 274, 462, 760, 1158, 1720, 2431, 3392, 4550, 6048, 7825, 10032, 12597, 15726, 19285, 23540, 28343, 33968, 40250, 47536, 55575, 64792, 74916, 86380, 98890, 112970, 128216, 145248, 163636, 184008, 205905, 230064, 255892, 284240, 314483
Offset: 1
Some solutions for n=5:
..2....3....1....1....3....3....3....1....3....3....4....3....0....4....0....0
..4....3....1....5....3....4....3....1....3....3....5....3....0....4....2....0
..2....4....4....4....3....3....3....5....4....4....3....3....2....2....4....4
..3....1....5....5....1....2....0....4....2....4....5....2....3....3....2....4
A207102
Number of 0..n arrays x(0..4) of 5 elements with each no smaller than the sum of its two previous neighbors modulo (n+1).
Original entry on oeis.org
12, 55, 176, 441, 989, 1904, 3504, 5925, 9652, 14850, 22390, 32305, 45920, 63323, 86112, 114393, 150567, 194218, 248704, 313495, 392480, 485024, 596300, 724705, 876876, 1051011, 1254512, 1485177, 1752481, 2052448, 2396864, 2781317, 3218508
Offset: 1
Some solutions for n=5
..2....2....0....3....0....0....3....3....0....0....3....0....4....4....4....3
..2....3....1....5....4....4....4....3....3....3....3....1....4....4....4....4
..5....5....5....2....4....5....3....3....5....4....4....3....4....4....4....5
..3....3....4....4....2....4....3....5....5....2....3....4....4....3....2....4
..4....5....3....0....1....3....5....5....4....2....1....2....4....4....0....4
A207103
Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its two previous neighbors modulo (n+1).
Original entry on oeis.org
18, 115, 458, 1382, 3579, 7868, 16224, 30390, 54294, 90959, 148204, 229944, 349580, 513531, 740976, 1041114, 1444791, 1960021, 2632938, 3474205, 4543704, 5855409, 7493700, 9466310, 11887746, 14768802, 18248930, 22339541, 27226927, 32903121
Offset: 1
Some solutions for n=5
..1....4....1....0....0....0....0....2....0....5....3....3....0....3....0....1
..5....4....3....2....1....3....3....2....3....5....3....3....2....4....2....4
..3....4....5....2....5....4....3....4....3....4....1....3....5....4....4....5
..5....4....2....5....1....5....4....2....3....5....5....3....3....4....5....3
..2....3....4....5....1....4....3....4....5....3....2....1....4....3....3....4
..1....4....3....5....2....5....3....1....3....4....1....5....4....1....2....3
A207104
Number of 0..n arrays x(0..6) of 7 elements with each no smaller than the sum of its two previous neighbors modulo (n+1).
Original entry on oeis.org
27, 239, 1193, 4322, 12964, 32531, 75114, 155922, 305362, 557095, 980755, 1636154, 2659934, 4162116, 6371316, 9468167, 13851960, 19762261, 27846149, 38462192, 52544085, 70608666, 94060846, 123500085, 160955964, 207261711, 265103651
Offset: 1
Some solutions for n=5
..2....4....2....0....1....0....2....3....0....4....3....1....1....3....0....2
..3....4....4....0....2....3....2....3....0....5....4....5....3....4....0....5
..5....2....4....0....4....3....5....4....2....4....3....3....5....1....4....3
..3....4....3....0....2....2....3....4....2....4....2....3....4....5....4....5
..4....2....3....2....4....5....4....3....4....4....5....3....3....2....3....3
..3....1....0....4....3....3....1....3....5....5....2....3....5....5....3....5
..4....4....4....0....1....4....5....1....5....5....4....2....4....5....1....3
Showing 1-10 of 10 results.
Comments