cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207106 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

6, 36, 98, 200, 350, 556, 826, 1168, 1590, 2100, 2706, 3416, 4238, 5180, 6250, 7456, 8806, 10308, 11970, 13800, 15806, 17996, 20378, 22960, 25750, 28756, 31986, 35448, 39150, 43100, 47306, 51776, 56518, 61540, 66850, 72456, 78366, 84588, 91130, 98000
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 3 of A207111.

Examples

			Some solutions for n=4:
..1..1..1....0..1..0....1..0..0....1..0..0....1..1..1....0..1..0....1..1..0
..1..1..1....1..0..1....0..0..1....1..0..1....1..1..0....1..1..0....0..0..1
..1..1..1....0..0..1....1..0..1....1..0..1....1..1..1....1..1..0....0..1..0
..1..1..1....1..0..1....0..0..1....1..0..1....1..1..1....1..1..0....0..1..0
		

Crossrefs

Cf. A207111.

Formula

Empirical: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n.
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: 2*x*(3 + 6*x - 5*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A207107 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

9, 81, 271, 643, 1271, 2239, 3641, 5581, 8173, 11541, 15819, 21151, 27691, 35603, 45061, 56249, 69361, 84601, 102183, 122331, 145279, 171271, 200561, 233413, 270101, 310909, 356131, 406071, 461043, 521371, 587389, 659441, 737881, 823073
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 4 of A207111.

Examples

			Some solutions for n=4:
..1..1..1..1....1..0..0..1....0..0..1..0....1..0..0..1....0..1..0..0
..1..1..1..1....1..0..0..1....1..0..0..1....0..1..0..0....0..0..1..0
..1..1..1..1....1..0..0..1....0..0..1..0....0..1..0..1....0..0..1..0
..1..1..1..1....1..0..0..1....1..0..1..0....0..1..0..0....0..0..1..0
		

Crossrefs

Cf. A207111.

Formula

Empirical: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1.
Conjectures from Colin Barker, Feb 20 2018: (Start)
G.f.: x*(9 + 36*x - 44*x^2 + 8*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A207112 Number of 3Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

6, 36, 98, 271, 677, 1504, 3399, 7220, 15184, 31664, 64749, 132543, 268994, 544151, 1099824, 2215226, 4461522, 8974915, 18040615, 36261642, 72844037, 146324852, 293885650, 590165228, 1185140667, 2379732659, 4778367860, 9594547523
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 3 of A207111

Examples

			Some solutions for n=4
..1..0..1..0....0..0..1..0....0..0..1..0....1..1..0..0....1..1..0..0
..1..0..1..0....1..0..0..1....0..0..1..0....1..1..1..1....0..0..1..0
..1..0..1..0....0..0..1..0....0..0..1..0....1..1..0..0....1..0..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -13*a(n-4) +3*a(n-5) +13*a(n-6) +9*a(n-7) -12*a(n-8) -2*a(n-9) -3*a(n-10) -a(n-11) -2*a(n-12) +8*a(n-13) +a(n-14) -2*a(n-15) -2*a(n-16) +a(n-17)

A207108 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

13, 169, 677, 1835, 4047, 7837, 13863, 22931, 36009, 54241, 78961, 111707, 154235, 208533, 276835, 361635, 465701, 592089, 744157, 925579, 1140359, 1392845, 1687743, 2030131, 2425473, 2879633, 3398889, 3989947, 4659955, 5416517, 6267707
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 5 of A207111.

Examples

			Some solutions for n=4:
..0..0..1..0..1....1..1..0..0..1....1..0..1..0..0....1..1..0..1..0
..1..1..1..0..1....0..1..0..1..0....1..0..0..1..0....1..1..0..1..0
..1..0..1..0..1....1..1..0..0..1....1..0..1..0..0....1..1..0..1..0
..1..1..1..0..1....0..1..0..0..1....1..0..1..0..0....1..1..0..1..0
		

Crossrefs

Cf. A207111.

Formula

Empirical: a(n) = (7/60)*n^5 + (8/3)*n^4 + (185/12)*n^3 + (19/3)*n^2 - (218/15)*n + 3.
Conjectures from Colin Barker, Jun 19 2018: (Start)
G.f.: x*(13 + 91*x - 142*x^2 + 48*x^3 + 7*x^4 - 3*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A207109 Number of n X 6 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

18, 324, 1504, 4534, 10898, 22714, 42874, 75198, 124602, 197280, 300900, 444814, 640282, 900710, 1241902, 1682326, 2243394, 2949756, 3829608, 4915014, 6242242, 7852114, 9790370, 12108046, 14861866, 18114648, 21935724, 26401374, 31595274
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 6 of A207111.

Examples

			Some solutions for n=4:
..0..0..1..0..1..0....1..1..1..1..1..0....1..1..0..0..1..0....0..1..0..1..0..0
..0..1..0..1..0..1....0..0..1..0..0..1....1..0..1..0..0..1....1..0..1..0..1..0
..0..1..0..0..1..0....0..0..1..0..1..0....1..1..1..0..0..1....1..1..0..0..1..0
..0..1..0..0..1..0....0..0..1..0..1..0....1..1..1..0..0..1....1..1..1..0..1..0
		

Crossrefs

Cf. A207111.

Formula

Empirical: a(n) = (7/360)*n^6 + (77/120)*n^5 + (635/72)*n^4 + (623/24)*n^3 - (511/180)*n^2 - (103/5)*n + 6.
Conjectures from Colin Barker, Jun 19 2018: (Start)
G.f.: 2*x*(9 + 99*x - 193*x^2 + 90*x^3 + 17*x^4 - 18*x^5 + 3*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A207110 Number of n X 7 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

25, 625, 3399, 11511, 30415, 68737, 139341, 260597, 457869, 765241, 1227499, 1902387, 2863155, 4201417, 6030337, 8488161, 11742113, 15992673, 21478255, 28480303, 37328823, 48408369, 62164501, 79110733, 99835989, 125012585
Offset: 1

Views

Author

R. H. Hardin, Feb 15 2012

Keywords

Comments

Column 7 of A207111.

Examples

			Some solutions for n=4:
..1..1..1..0..0..1..0....0..1..0..0..1..0..1....0..0..1..0..0..1..0
..0..1..0..1..0..0..1....1..0..0..1..0..0..1....1..1..1..0..0..1..0
..1..1..0..1..0..1..0....1..1..0..1..0..0..1....0..0..1..0..0..1..0
..1..1..0..1..0..0..1....1..0..0..1..0..0..1....1..0..1..0..0..1..0
		

Crossrefs

Cf. A207111.

Formula

Empirical: a(n) = (1/280)*n^7 + (7/45)*n^6 + (47/15)*n^5 + (206/9)*n^4 + (4111/120)*n^3 - (1037/45)*n^2 - (4493/210)*n + 9.
Conjectures from Colin Barker, Jun 19 2018: (Start)
G.f.: x*(25 + 425*x - 901*x^2 + 419*x^3 + 249*x^4 - 269*x^5 + 79*x^6 - 9*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A207113 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

8, 64, 200, 643, 1835, 4534, 11511, 27012, 62814, 144676, 325111, 733469, 1635998, 3639007, 8091148, 17910532, 39681294, 87775953, 194044225, 429056388, 947971827, 2094875648, 4628499152, 10225059546, 22590584639, 49903794405
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 4 of A207111

Examples

			Some solutions for n=4
..1..1..1..1....1..1..0..1....1..0..0..1....0..0..1..0....1..1..0..1
..1..1..1..1....0..0..1..0....1..0..0..1....0..0..1..0....1..0..1..0
..1..1..1..1....0..1..0..1....1..0..0..1....0..0..1..0....1..0..0..1
..1..1..1..1....0..0..1..0....1..0..0..1....0..0..1..0....1..0..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +5*a(n-2) -4*a(n-3) -23*a(n-4) +4*a(n-5) +40*a(n-6) +19*a(n-7) -38*a(n-8) -28*a(n-9) -a(n-11) +13*a(n-12) +38*a(n-13) +15*a(n-14) -31*a(n-15) -24*a(n-16) -2*a(n-17) +9*a(n-18) +6*a(n-19) +6*a(n-20) -2*a(n-21) -3*a(n-22) -a(n-23) +a(n-24)

A207114 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

10, 100, 350, 1271, 4047, 10898, 30415, 77326, 194952, 486102, 1177409, 2870021, 6897378, 16540251, 39654080, 94561950, 225894824, 538481145, 1283102003, 3058471278, 7283180531, 17351112080, 41324155722, 98410550808, 234389583427
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 5 of A207111

Examples

			Some solutions for n=4
..1..0..0..1....0..1..0..1....0..0..1..0....1..1..1..0....0..1..0..0
..0..1..0..0....0..1..0..0....0..1..0..1....1..0..1..0....0..1..0..1
..1..0..0..1....0..1..0..1....0..0..1..0....1..1..1..0....0..1..0..0
..1..1..0..1....0..1..0..1....0..1..0..1....1..1..1..0....0..1..0..0
..1..1..0..1....0..1..0..1....0..1..0..1....1..1..1..0....0..1..0..0
		

Formula

Empirical: a(n) = a(n-1) +9*a(n-2) +2*a(n-3) -45*a(n-4) -38*a(n-5) +103*a(n-6) +166*a(n-7) -90*a(n-8) -319*a(n-9) -86*a(n-10) +254*a(n-11) +207*a(n-12) +52*a(n-13) +50*a(n-14) -151*a(n-15) -425*a(n-16) -170*a(n-17) +375*a(n-18) +403*a(n-19) -9*a(n-20) -227*a(n-21) -147*a(n-22) -27*a(n-23) +50*a(n-24) +79*a(n-25) +29*a(n-26) -28*a(n-27) -26*a(n-28) +2*a(n-29) +7*a(n-30) +a(n-31) -a(n-32)

A207115 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

12, 144, 556, 2239, 7837, 22714, 68737, 187054, 505040, 1346150, 3472283, 9030485, 23093108, 58964061, 150498240, 381786944, 970985642, 2462695787, 6245279141, 15844141700, 40148846797, 101805976056, 258034064806, 653990198430
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 6 of A207111

Examples

			Some solutions for n=4
..0..0..1..0....1..1..0..0....0..0..1..0....0..0..1..0....1..0..1..0
..1..0..1..0....1..1..1..0....0..1..0..0....1..0..1..0....0..1..0..1
..0..0..1..0....1..1..1..0....0..1..0..0....1..0..1..0....1..1..0..0
..1..0..1..0....1..1..1..0....0..1..0..0....1..0..1..0....1..1..0..1
..1..0..1..0....1..1..1..0....0..1..0..0....1..0..1..0....1..1..0..1
..1..0..1..0....1..1..1..0....0..1..0..0....1..0..1..0....1..1..0..1
		

Formula

Empirical: a(n) = a(n-1) +11*a(n-2) +2*a(n-3) -65*a(n-4) -54*a(n-5) +189*a(n-6) +289*a(n-7) -247*a(n-8) -717*a(n-9) -70*a(n-10) +833*a(n-11) +558*a(n-12) -116*a(n-13) -140*a(n-14) -566*a(n-15) -1355*a(n-16) -342*a(n-17) +1914*a(n-18) +1998*a(n-19) -313*a(n-20) -1832*a(n-21) -1300*a(n-22) -34*a(n-23) +883*a(n-24) +1032*a(n-25) +316*a(n-26) -492*a(n-27) -565*a(n-28) -131*a(n-29) +159*a(n-30) +164*a(n-31) +64*a(n-32) -24*a(n-33) -47*a(n-34) -17*a(n-35) +9*a(n-36) +7*a(n-37) -a(n-39)

A207116 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 826, 3641, 13863, 42874, 139341, 402498, 1153962, 3259098, 8878431, 24420005, 65876246, 177547567, 478191946, 1279250394, 3433218078, 9182843871, 24565794267, 65742901568, 175705176107, 470018725612, 1256530345118
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Row 7 of A207111

Examples

			Some solutions for n=4
..0..1..0..1....0..0..1..0....0..0..1..0....1..0..1..0....1..1..0..0
..1..1..0..0....0..1..0..1....1..1..0..0....1..0..0..1....1..0..0..1
..1..1..0..1....0..1..0..0....1..1..1..0....1..0..0..1....1..1..0..1
..1..1..0..1....0..1..0..0....1..1..1..0....1..0..0..1....1..0..0..1
..1..1..0..1....0..1..0..0....1..1..1..0....1..0..0..1....1..1..0..1
..1..1..0..1....0..1..0..0....1..1..1..0....1..0..0..1....1..0..0..1
..1..1..0..1....0..1..0..0....1..1..1..0....1..0..0..1....1..1..0..1
		

Formula

Empirical: a(n) = 14*a(n-2) +16*a(n-3) -88*a(n-4) -175*a(n-5) +241*a(n-6) +873*a(n-7) -23*a(n-8) -2339*a(n-9) -1756*a(n-10) +3133*a(n-11) +4977*a(n-12) -651*a(n-13) -5183*a(n-14) -2799*a(n-15) -1396*a(n-16) -2060*a(n-17) +6290*a(n-18) +16137*a(n-19) +4270*a(n-20) -20843*a(n-21) -22622*a(n-22) +3496*a(n-23) +22840*a(n-24) +16236*a(n-25) -1848*a(n-26) -13694*a(n-27) -13472*a(n-28) -2741*a(n-29) +8808*a(n-30) +9784*a(n-31) +1585*a(n-32) -4681*a(n-33) -4085*a(n-34) -657*a(n-35) +1374*a(n-36) +1369*a(n-37) +376*a(n-38) -403*a(n-39) -405*a(n-40) -40*a(n-41) +117*a(n-42) +49*a(n-43) -13*a(n-44) -11*a(n-45) +a(n-47)
Showing 1-10 of 11 results. Next