A207135 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k)) ).
1, 2, 5, 32, 796, 77508, 26058970, 28765221688, 101824384364586, 1145306676113095172, 40618070255705049577152, 4523562146025746408072408406, 1576501611479138389748204925102907, 1714649258669533421310212170714443813118
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +... where the logarithm of the g.f. equals the l.g.f. of A207136: log(A(x)) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))))+x*O(x^n)),n)} for(n=0,20,print1(a(n),", "))
Comments