A206821 Numbers that match irreducible polynomials over {-1,0,1} with leading coefficient 1.
2, 3, 7, 8, 10, 14, 16, 18, 21, 23, 29, 31, 35, 41, 42, 44, 48, 50, 54, 56, 60, 62, 66, 70, 72, 76, 78, 80, 82, 84, 86, 88, 93, 97, 99, 103, 109, 111, 115, 117, 123, 125, 129, 131, 137, 141, 143, 147, 153, 155, 159, 161, 165, 167, 171, 173, 179, 183, 186, 188
Offset: 1
Keywords
A207187 Numbers matching polynomials y(k,x) that have x+1 as a factor; see Comments.
3, 5, 9, 13, 19, 22, 25, 27, 30, 33, 39, 43, 49, 52, 55, 59, 65, 68, 71, 83, 89, 92, 95, 101, 104, 107, 110, 113, 116, 119, 121, 124, 127, 133, 136, 139, 142, 145, 148, 151, 157, 169, 172, 175, 181, 185, 191, 194, 197, 209, 215, 218, 221, 224, 227, 230
Offset: 1
Keywords
Comments
The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
Examples
The first 13 polynomials: 1 .... 1 2 .... x 3 .... x + 1 4 .... x^2 5 .... x^2 - 1 6 .... x^2 - x 7 .... x^2 - x - 1 8 .... x^2 + 1 9 .... x^2 + x 10 ... x^2 + x + 1 11 ... x^3 12 ... x^3 - 1 13 ... x^3 - x The list exemplifies these sequences: A207187 (multiples of x + 1): 3,5,9,13,... A207188 (multiples of x): 2,4,6,9,11,13,... A207189 (multiples of x - 1): 5,6,12,13,... A207190 (multiples of x^2 + 1): 8,20,25,27,...
Crossrefs
Cf. A206821.
Programs
-
Mathematica
t = Table[IntegerDigits[n, 2], {n, 1, 2000}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]] TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]] f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1]; q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]] q2[n_] := p[n - f[k] + 2] y1 = Table[p[n], {n, 1, 4}]; Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}], Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}] y = Flatten[y1]; (* monic polynomials over {-1,0,1} *) TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]] Table[y[[n]] /. x -> -1, {n, 1, 300}]; Flatten[Position[%, 0]] (* A207187 *) Table[y[[n]] /. x -> 0, {n, 1, 300}] ; Flatten[Position[%, 0]] (* A207188 *) Table[y[[n]] /. x -> 1, {n, 1, 1200}] ; Flatten[Position[%, 0]] (* A207189 *) Table[y[[n]] /. x -> I, {n, 1, 600}] ; Flatten[Position[%, 0]] (* A207190 *)
A207188 Numbers matching polynomials y(k,x) that have x as a factor; see Comments.
2, 4, 6, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1
Keywords
Comments
The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
Examples
The first 13 polynomials: 1 .... 1 2 .... x 3 .... x + 1 4 .... x^2 5 .... x^2 - 1 6 .... x^2 - x 7 .... x^2 - x - 1 8 .... x^2 + 1 9 .... x^2 + x 10 ... x^2 + x + 1 11 ... x^3 12 ... x^3 - 1 13 ... x^3 - x The list exemplifies these sequences: A207187 (multiples of x + 1): 3,5,9,13,... A207188 (multiples of x): 2,4,6,9,11,13,... A207189 (multiples of x - 1): 5,6,12,13,... A207190 (multiples of x^2 + 1): 8,20,25,27,...
Crossrefs
Cf. A206821.
Programs
-
Mathematica
t = Table[IntegerDigits[n, 2], {n, 1, 2000}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]] TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]] f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1]; q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]] q2[n_] := p[n - f[k] + 2] y1 = Table[p[n], {n, 1, 4}]; Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}], Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}] y = Flatten[y1]; (* polynomials over {-1,0,1} *) TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]] Table[y[[n]] /. x -> -1, {n, 1, 300}]; Flatten[Position[%, 0]] (* A207187 *) Table[y[[n]] /. x -> 0, {n, 1, 300}] ; Flatten[Position[%, 0]] (* A207188 *) Table[y[[n]] /. x -> 1, {n, 1, 1200}] ; Flatten[Position[%, 0]] (* A207189 *) Table[y[[n]] /. x -> I, {n, 1, 600}] ; Flatten[Position[%, 0]] (* A207190 *)
A207189 Numbers matching polynomials y(k,x) that have x-1 as a factor; see Comments.
5, 6, 12, 13, 15, 27, 28, 30, 34, 58, 59, 61, 65, 73, 121, 122, 124, 128, 136, 152, 248, 249, 251, 255, 263, 279, 311, 503, 504, 506, 510, 518, 534, 566, 630, 1014, 1015, 1017, 1021, 1029, 1045, 1077, 1141, 1269, 2037, 2038, 2040, 2044, 2052, 2068
Offset: 1
Keywords
Comments
The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
Examples
The first 13 polynomials: 1 .... 1 2 .... x 3 .... x + 1 4 .... x^2 5 .... x^2 - 1 6 .... x^2 - x 7 .... x^2 - x - 1 8 .... x^2 + 1 9 .... x^2 + x 10 ... x^2 + x + 1 11 ... x^3 12 ... x^3 - 1 13 ... x^3 - x The list exemplifies these sequences: A207187 (multiples of x + 1): 3,5,9,13,... A207188 (multiples of x): 2,4,6,9,11,13,... A207189 (multiples of x - 1): 5,6,12,13,... A207190 (multiples of x^2 + 1): 8,20,25,27,...
Crossrefs
Cf. A206821.
Programs
-
Mathematica
t = Table[IntegerDigits[n, 2], {n, 1, 2000}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]] TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]] f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1]; q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]] q2[n_] := p[n - f[k] + 2] y1 = Table[p[n], {n, 1, 4}]; Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}], Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}] y = Flatten[y1]; (* polynomials over {-1,0,1} *) TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]] Table[y[[n]] /. x -> -1, {n, 1, 300}]; Flatten[Position[%, 0]] (* A207187 *) Table[y[[n]] /. x -> 0, {n, 1, 300}] ; Flatten[Position[%, 0]] (* A207188 *) Table[y[[n]] /. x -> 1, {n, 1, 1200}] ; Flatten[Position[%, 0]] (* A207189 *) Table[y[[n]] /. x -> I, {n, 1, 600}] ; Flatten[Position[%, 0]] (* A207190 *)
Comments
Crossrefs
Programs
Mathematica