A207191 Numbers that match even polynomials among the monic polynomials over {-1,0,1}, ordered as at A206821.
1, 4, 5, 8, 26, 27, 30, 31, 42, 45, 46, 120, 121, 124, 125, 136, 137, 140, 141, 184, 187, 188, 199, 200, 203, 204, 502, 503, 506, 507, 518, 519, 522, 523, 566, 567, 570, 571, 582, 583, 586, 587, 758, 761, 762, 773, 774, 777, 778, 821, 822, 825, 826
Offset: 1
Keywords
Examples
The first 13 polynomials: 1 .... 1 2 .... x 3 .... x + 1 4 .... x^2 5 .... x^2 - 1 6 .... x^2 - x 7 .... x^2 - x - 1 8 .... x^2 + 1 9 .... x^2 + x 10 ... x^2 + x + 1 11 ... x^3 12 ... x^3 - 1 13 ... x^3 - x Numbers n for which y(n,-x)=y(n,x): 1,4,5,8,26,... Numbers n for which y(n,-x)=-y(n,x): 2,11,13,20,...
Crossrefs
Cf. A206821.
Programs
-
Mathematica
t = Table[IntegerDigits[n, 2], {n, 1, 2000}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]] TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]] f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1]; q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]] q2[n_] := p[n - f[k] + 2] y1 = Table[p[n], {n, 1, 4}]; Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}], Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}] y = Flatten[y1]; (* polynomials over {-1,0,1} *) Flatten[Position[y - (y /. x -> -x), 0]] (* A207191 *) Flatten[Position[y + (y /. x -> -x), 0]] (* A207192 *)
Comments