cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207192 Numbers that match odd polynomials among the monic polynomials over {-1,0,1}, ordered as at A206821.

Original entry on oeis.org

2, 11, 13, 20, 57, 59, 65, 67, 90, 96, 98, 247, 249, 255, 257, 279, 281, 287, 289, 376, 382, 384, 406, 408, 414, 416, 1013, 1015, 1021, 1023, 1045, 1047, 1053, 1055, 1141, 1143, 1149, 1151, 1173, 1175, 1181, 1183, 1526, 1532, 1534, 1556, 1558
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2012

Keywords

Comments

The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.

Examples

			The first 13 polynomials:
1 .... 1
2 .... x
3 .... x + 1
4 .... x^2
5 .... x^2 - 1
6 .... x^2 - x
7 .... x^2 - x - 1
8 .... x^2 + 1
9 .... x^2 + x
10 ... x^2 + x + 1
11 ... x^3
12 ... x^3 - 1
13 ... x^3 - x
Numbers n for which y(n,-x)=y(n,x): 1,4,5,8,26,...
Numbers n for which y(n,-x)=-y(n,x): 2,11,13,20,...
		

Crossrefs

Cf. A206821.

Programs

  • Mathematica
    t = Table[IntegerDigits[n, 2], {n, 1, 2000}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
    TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
    f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
    q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
    q2[n_] := p[n - f[k] + 2]
    y1 = Table[p[n], {n, 1, 4}];
    Do[AppendTo[y1,
      Join[Table[q1[n], {n, f[k], g[k] - 1}],
       Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}]
    y = Flatten[y1]; (* polynomials over {-1,0,1} *)
    Flatten[Position[y - (y /. x -> -x), 0]]  (* A207191 *)
    Flatten[Position[y + (y /. x -> -x), 0]]  (* A207192  *)