cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207305 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 98, 64, 10, 19, 169, 271, 200, 100, 12, 28, 361, 665, 643, 350, 144, 14, 41, 784, 1675, 1759, 1271, 556, 196, 16, 60, 1681, 4344, 4939, 3773, 2239, 826, 256, 18, 88, 3600, 11081, 14446, 11497, 7093, 3641, 1168, 324, 20, 129
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Table starts
..2...4....6....9....13....19.....28......41......60.......88......129
..4..16...36...81...169...361....784....1681....3600.....7744....16641
..6..36...98..271...665..1675...4344...11081...28136....71908...183709
..8..64..200..643..1759..4939..14446...41505..118266...339548...975493
.10.100..350.1271..3773.11497..36868..116117..361408..1134028..3564401
.12.144..556.2239..7093.23091..79802..271023..906448..3057442.10340359
.14.196..826.3641.12169.41893.154228..558557.1985288..7118528.25615229
.16.256.1168.5581.19515.70537.274288.1050811.3937294.14887794.56536529

Examples

			Some solutions for n=4 k=3
..1..1..1....0..1..0....1..1..0....0..0..1....1..1..0....0..1..0....1..0..0
..1..1..1....1..1..0....0..0..1....0..0..1....1..0..0....0..1..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..1....1..0..0....0..1..0....1..0..0
..1..1..1....1..1..0....1..1..1....0..0..1....1..0..0....0..1..0....0..0..1
		

Crossrefs

Column 2 is A016742
Column 3 is A207106
Column 4 is A207107
Row 1 is A000930(n+3)
Row 2 is A207170

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (8/3)*n^4 + (49/3)*n^3 + (16/3)*n^2 - (43/3)*n + 3
k=6: a(n) = (4/15)*n^5 + (45/4)*n^4 + (199/6)*n^3 - (73/4)*n^2 - (373/30)*n + 5
k=7: a(n) = (187/60)*n^5 + (153/4)*n^4 + (455/12)*n^3 - (249/4)*n^2 + (209/30)*n + 4