cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207325 Primes p which divide A003499((p-1)/2)+6 and do not divide A003499(n) + 6 where n < (p-1)/2.

Original entry on oeis.org

3, 5, 11, 13, 19, 37, 43, 53, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 181, 211, 277, 283, 307, 317, 331, 347, 349, 373, 397, 421, 461, 467, 491, 499, 509, 523, 541, 547, 557, 563, 571, 587, 613, 619, 653, 659, 661, 691, 701, 709, 733, 739
Offset: 1

Views

Author

Kenneth J Ramsey, Feb 16 2012

Keywords

Comments

All odd numbers less than 3,000,000 have been checked and it appears that most primes of the form 8N +/- 3 (e.g. 3,5,11,13,19,37 ...) meet the test with some exceptions, (e.g. 29) and no primes of the form 8N +/-1 or composites meet the test.

Crossrefs

Cf. A003499, A001541 (which equals 1/2 of A003499).

Programs

  • Mathematica
    f=Compile[{{Co,_Integer}, {S0,_Integer}, {S1,_Integer}, {Caa,_Integer}}, Module[{xCo=Co, xS0=S0, xS1=S1, Temp}, While[Temp=Mod[6 xS1-xS0-6, Caa]; xCo>0 && Temp>0, xS0=xS1; xS1=Temp; xCo--]; xCo]]; Caa=5; Reap[While[Caa<1000, Co=(Caa-3)/2; S0=2; S1=3; If[f[Co, S0, S1, Caa] == 1, Sow[Caa]]; Caa+=2]] (* prime 3 skipped to simplify code. The above code, provided by Bill Simpson, is 20 times faster than my original code. Note that it also appears possible to increase speed by a factor of 10 by not searching numbers of the form 8n+/-1 *)