A207336 One half of smallest positive nontrivial even solution of the congruence x^2 == 1 (mod A001748(n+2)), n>=1.
2, 4, 5, 7, 8, 10, 11, 14, 16, 19, 20, 22, 23, 26, 29, 31, 34, 35, 37, 40, 41, 44, 49, 50, 52, 53, 55, 56, 64, 65, 68, 70, 74, 76, 79, 82, 83, 86, 89, 91, 95, 97, 98, 100, 106, 112, 113, 115, 116, 119
Offset: 1
Keywords
Examples
The actual solutions are 4, 8, 10, 14, 16, 20, 22, 28, 32, 38, 40, 44, 46, 52, 58, 62, 68, 70, 74, 80, 82, 88, 98, 100, 104, 106, 110, 112, 128, 130, 136, 140, 148, 152, 158, 164, 166, 172, 178, 182, 190, 194, 196, 200, 212, 224, 226, 230, ... n=4: 2*a(4) = 14 = 3*13 - 25. 14^2 = 196 == 1 (mod 39), 25^2 = 625 == 1 (mod 39). Representatives of the trivial solutions are 1 and 39-1= 38. All-together there are 4 incongruent solutions.
Links
- Jon Maiga, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[(3*Prime[n+2]-SelectFirst[Solve[x^2==1 && x !=1,x,Modulus->3*Prime[n+2]][[All,1,2]],OddQ])/2, {n, 50}] (* Jon Maiga, Sep 28 2019 *)
Comments