cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207363 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

6, 36, 90, 225, 420, 784, 1260, 2025, 2970, 4356, 6006, 8281, 10920, 14400, 18360, 23409, 29070, 36100, 43890, 53361, 63756, 76176, 89700, 105625, 122850, 142884, 164430, 189225, 215760, 246016, 278256, 314721, 353430, 396900, 442890, 494209
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 3 of A207368.

Examples

			Some solutions for n=4:
..1..1..1....0..0..1....0..1..0....1..1..1....0..1..0....1..1..0....0..1..0
..1..1..1....0..1..0....1..1..0....1..1..1....1..1..0....0..0..1....0..1..0
..0..1..0....0..0..1....0..1..0....1..1..1....0..1..0....0..1..0....0..1..0
..0..1..0....0..1..0....0..1..0....1..1..1....1..0..0....0..0..1....0..1..0
		

Crossrefs

Cf. A207368.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Feb 21 2018: (Start)
G.f.: x*(6 + 24*x + 6*x^2 + 9*x^3 + 6*x^4 - 2*x^5 - 2*x^6 + x^7)/ ((1 - x)^5*(1 + x)^3).
a(n) = (n^4 + 6*n^3 + 13*n^2 + 12*n + 4) / 4 for n even.
a(n) = (n^4 + 6*n^3 + 11*n^2 + 6*n) / 4 for n odd.
(End)

A207364 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 252, 784, 1736, 3844, 7130, 13225, 21965, 36481, 56154, 86436, 125832, 183184, 255516, 356409, 480585, 648025, 850080, 1115136, 1429824, 1833316, 2305862, 2900209, 3588221, 4439449, 5414990, 6604900, 7956720, 9585216, 11421144
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 4 of A207368.

Examples

			Some solutions for n=4:
..1..0..0..1....0..0..1..0....1..1..1..1....1..1..0..1....0..1..0..0
..0..1..0..1....1..1..0..0....1..1..1..1....1..1..0..1....1..1..0..1
..1..0..0..1....0..0..1..0....1..1..1..1....0..1..0..0....0..1..0..0
..0..1..0..1....1..1..0..0....0..1..0..1....0..1..0..0....1..1..0..0
		

Crossrefs

Cf. A207368.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(9 + 63*x + 54*x^2 + 46*x^3 + 15*x^4 - 19*x^5 - 22*x^6 + 9*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5). - Colin Barker, Jun 22 2018

A207365 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

13, 169, 624, 2304, 5856, 14884, 31110, 65025, 120105, 221841, 375858, 636804, 1011864, 1607824, 2430756, 3674889, 5338845, 7756225, 10906060, 15335056, 20981928, 28708164, 38379354, 51308569, 67239081, 88115769, 113488830
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Column 5 of A207368

Examples

			Some solutions for n=4
..1..0..1..0..0....0..0..1..0..0....1..1..1..0..0....0..0..1..0..1
..1..0..1..0..0....1..1..0..1..0....0..1..0..1..0....0..1..0..0..1
..0..0..1..0..0....0..0..1..0..0....0..0..1..0..0....0..0..1..0..1
..0..0..1..0..0....1..1..0..1..0....0..1..0..1..0....0..1..0..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A207366 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

18, 324, 1350, 5625, 15525, 42849, 95220, 211600, 409860, 793881, 1397088, 2458624, 4029760, 6604900, 10246590, 15896169, 23603040, 35046400, 50207520, 71927361, 100016433, 139074849, 188570070, 255680100, 339259830, 450161089, 586225710
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Column 6 of A207368

Examples

			Some solutions for n=4
..0..0..1..0..0..1....0..1..0..0..1..0....1..0..1..0..1..0....0..1..0..0..1..0
..0..1..0..1..0..0....0..0..1..0..0..1....0..1..0..1..0..1....0..0..1..0..1..0
..0..0..1..0..0..1....0..1..0..0..1..0....0..0..1..0..1..0....0..1..0..0..1..0
..0..1..0..1..0..0....0..0..1..0..0..1....0..1..0..1..0..1....0..0..1..0..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A207367 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

25, 625, 3025, 14641, 45738, 142884, 353808, 876096, 1869192, 3988009, 7660492, 14714896, 26130832, 46403344, 77513748, 129481641, 205925763, 327501409, 500255371, 764135449, 1128442546, 1666435684, 2391271116, 3431382084
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Column 7 of A207368

Examples

			Some solutions for n=4
..1..0..1..0..1..0..0....0..0..1..0..0..1..0....0..1..0..0..1..0..1
..0..1..0..1..0..1..0....1..0..1..0..0..1..0....1..0..1..0..1..0..1
..0..0..1..0..1..0..0....0..0..1..0..0..1..0....0..1..0..0..1..0..0
..0..1..0..1..0..1..0....0..0..1..0..0..1..0....0..0..1..0..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)

A207369 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 225, 784, 2304, 5625, 14641, 33856, 77284, 173056, 372100, 795664, 1664100, 3433609, 7017201, 14160169, 28355625, 56310016, 111007296, 217533001, 423742225, 821280964, 1584358416, 3043287556, 5823216100, 11102415424
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 4 of A207368

Examples

			Some solutions for n=4
..0..1..0..0....1..1..0..1....1..1..0..1....1..1..1..1....0..0..1..0
..1..1..0..1....0..0..1..0....1..1..0..1....1..1..1..1....1..1..0..1
..0..1..0..0....0..1..0..1....0..1..0..0....1..1..1..1....0..0..1..0
..1..1..0..0....0..0..1..0....0..1..0..0....0..1..0..1....1..1..0..1
		

Formula

Empirical: a(n) = 4*a(n-1) -a(n-2) -8*a(n-3) -10*a(n-4) +30*a(n-5) +11*a(n-6) -15*a(n-7) -43*a(n-8) +21*a(n-9) -5*a(n-10) +26*a(n-11) +a(n-12) +27*a(n-13) -42*a(n-14) +3*a(n-15) -14*a(n-16) +15*a(n-17) -9*a(n-18) +17*a(n-19) -6*a(n-20) +2*a(n-21) -4*a(n-22) +2*a(n-23) -2*a(n-24) +a(n-25)

A207370 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

12, 144, 420, 1736, 5856, 15525, 45738, 115368, 287174, 700960, 1620770, 3730344, 8345010, 18340994, 39838311, 85088956, 179931750, 376333104, 779411136, 1601416922, 3263854675, 6606700688, 13288445988, 26569986742, 52845438100
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 5 of A207368

Examples

			Some solutions for n=4
..1..0..1..0....1..1..1..0....1..1..0..0....0..1..0..1....0..0..1..0
..0..0..1..0....0..0..1..0....1..1..1..0....0..1..0..0....1..1..0..1
..1..0..1..0....1..1..1..0....0..1..0..0....0..1..0..1....0..0..1..0
..0..0..1..0....0..0..1..0....1..1..1..0....0..1..0..0....0..1..0..0
..0..0..1..0....1..0..1..0....0..1..0..0....0..1..0..0....0..0..1..0
		

Formula

Empirical: a(n) = 5*a(n-1) -3*a(n-2) -14*a(n-3) -7*a(n-4) +68*a(n-5) +9*a(n-6) -97*a(n-7) -119*a(n-8) +156*a(n-9) +124*a(n-10) +29*a(n-11) -161*a(n-12) -6*a(n-13) -164*a(n-14) +73*a(n-15) +79*a(n-16) +216*a(n-17) -118*a(n-18) +9*a(n-19) -127*a(n-20) +16*a(n-21) -64*a(n-22) +107*a(n-23) -11*a(n-24) +34*a(n-25) -30*a(n-26) +13*a(n-27) -26*a(n-28) +9*a(n-29) -3*a(n-30) +5*a(n-31) -2*a(n-32) +2*a(n-33) -a(n-34)

A207371 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

16, 256, 784, 3844, 14884, 42849, 142884, 393129, 1067089, 2839225, 7059649, 17489124, 41847961, 97970404, 226171521, 511302544, 1141764100, 2515122801, 5472448576, 11789182084, 25139688025, 53146847296, 111453819409
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 6 of A207368

Examples

			Some solutions for n=4
..0..0..1..0....0..1..0..1....1..1..1..0....1..0..0..1....1..0..0..1
..1..1..1..1....0..1..0..0....0..1..0..1....0..1..0..0....1..1..1..1
..0..0..1..0....0..1..0..1....1..0..1..0....1..0..0..1....1..0..0..1
..0..0..1..0....0..1..0..0....0..1..0..1....0..1..0..0....0..1..0..1
..0..0..1..0....0..1..0..1....0..0..1..0....1..0..0..1....1..0..0..1
..0..0..1..0....0..1..0..0....0..1..0..1....0..1..0..0....0..1..0..1
		

Formula

Empirical: a(n) = 6*a(n-1) -7*a(n-2) -15*a(n-3) +4*a(n-4) +98*a(n-5) -47*a(n-6) -173*a(n-7) -95*a(n-8) +424*a(n-9) +118*a(n-10) -170*a(n-11) -483*a(n-12) +180*a(n-13) -177*a(n-14) +465*a(n-15) +110*a(n-16) +412*a(n-17) -805*a(n-18) +63*a(n-19) -392*a(n-20) +462*a(n-21) -217*a(n-22) +625*a(n-23) -324*a(n-24) +154*a(n-25) -367*a(n-26) +207*a(n-27) -225*a(n-28) +204*a(n-29) -74*a(n-30) +102*a(n-31) -82*a(n-32) +50*a(n-33) -44*a(n-34) +18*a(n-35) -11*a(n-36) +10*a(n-37) -5*a(n-38) +3*a(n-39) -a(n-40)

A207372 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

20, 400, 1260, 7130, 31110, 95220, 353808, 1047717, 3056647, 8773795, 23208895, 61308120, 155644140, 385081690, 938448639, 2231352160, 5231232640, 12073401891, 27463516024, 61756669106, 137220631975, 301814503696
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 7 of A207368

Examples

			Some solutions for n=4
..1..0..0..1....1..0..1..0....0..1..0..1....0..1..0..1....0..1..0..0
..0..1..0..0....0..0..1..0....1..0..1..0....1..1..1..1....0..0..1..0
..1..0..0..1....1..0..1..0....0..1..0..1....0..1..0..1....0..1..0..0
..0..1..0..0....0..0..1..0....0..0..1..0....1..0..0..1....0..0..1..0
..1..0..0..1....1..0..1..0....0..1..0..1....0..1..0..0....0..1..0..0
..0..1..0..0....0..0..1..0....0..0..1..0....1..0..0..1....0..0..1..0
..1..0..0..1....1..0..1..0....0..1..0..0....0..1..0..0....0..1..0..0
		

Formula

Empirical: a(n) = 7*a(n-1) -11*a(n-2) -19*a(n-3) +24*a(n-4) +148*a(n-5) -154*a(n-6) -372*a(n-7) +64*a(n-8) +1196*a(n-9) +12*a(n-10) -1502*a(n-11) -1463*a(n-12) +1885*a(n-13) +1364*a(n-14) +844*a(n-15) -1509*a(n-16) -469*a(n-17) -3160*a(n-18) +1214*a(n-19) +1531*a(n-20) +3827*a(n-21) -2031*a(n-22) +283*a(n-23) -3360*a(n-24) +392*a(n-25) -1491*a(n-26) +3515*a(n-27) -479*a(n-28) +1537*a(n-29) -1768*a(n-30) +618*a(n-31) -1700*a(n-32) +920*a(n-33) -429*a(n-34) +847*a(n-35) -416*a(n-36) +424*a(n-37) -379*a(n-38) +133*a(n-39) -165*a(n-40) +119*a(n-41) -67*a(n-42) +59*a(n-43) -23*a(n-44) +13*a(n-45) -11*a(n-46) +5*a(n-47) -3*a(n-48) +a(n-49)

A207362 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 16, 90, 784, 5856, 42849, 353808, 2792241, 21195317, 182223001, 1372615690, 11550015841, 91115397450, 745461286801, 5965914998428, 49005684164836, 389634565985060, 3219980044337424
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Diagonal of A207368.

Examples

			Some solutions for n=4
..1..1..1..1....1..0..1..0....0..1..0..1....1..1..0..1....1..1..0..1
..0..0..1..0....0..0..1..0....0..1..0..0....1..0..0..1....0..0..1..0
..0..0..1..0....0..0..1..0....0..1..0..0....0..1..0..0....0..1..0..1
..0..0..1..0....0..0..1..0....0..1..0..0....1..0..0..1....0..0..1..0
		

Crossrefs

Cf. A207368.
Showing 1-10 of 10 results.