cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208013 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 90, 81, 12, 19, 169, 261, 225, 144, 16, 28, 361, 624, 841, 420, 256, 20, 41, 784, 1482, 2304, 1943, 784, 400, 25, 60, 1681, 3808, 6084, 5952, 4489, 1260, 625, 30, 88, 3600, 9512, 18496, 16224, 15376, 8643, 2025, 900, 36, 129
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Table starts
..2...4....6.....9....13.....19.....28......41.......60.......88.......129
..4..16...36....81...169....361....784....1681.....3600.....7744.....16641
..6..36...90...261...624...1482...3808....9512....23280....58080....144996
..9..81..225...841..2304...6084..18496...53824...150544...435600...1263376
.12.144..420..1943..5952..16224..55624..181192...545140..1737120...5591900
.16.256..784..4489.15376..43264.167281..609961..1974025..6927424..24750625
.20.400.1260..8643.32860..92560.393049.1578401..5340405.20121640..78251775
.25.625.2025.16641.70225.198025.923521.4084441.14447601.58446025.247401441

Examples

			Some solutions for n=4 k=3
..0..1..1....1..0..0....1..0..0....1..0..0....1..0..0....0..0..1....0..1..0
..1..1..0....0..0..1....1..1..0....0..1..0....0..1..1....0..1..0....1..1..0
..0..1..1....1..0..0....1..0..0....1..0..0....1..0..0....0..0..1....0..1..0
..1..0..0....0..0..1....0..1..0....0..1..0....0..0..1....0..1..0....1..0..0
		

Crossrefs

Column 1 is A002620(n+2)
Column 2 is A030179(n+2)
Column 3 is A207363
Row 1 is A000930(n+3)
Row 2 is A207170
Row 3 is A207171

A208118 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 90, 81, 12, 25, 225, 225, 225, 144, 16, 40, 625, 825, 625, 420, 256, 20, 64, 1600, 3025, 3025, 1225, 784, 400, 25, 104, 4096, 9240, 14641, 7315, 2401, 1260, 625, 30, 169, 10816, 28224, 53361, 43681, 17689, 3969, 2025, 900
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Table starts
..2...4....6....9....15.....25......40.......64.......104........169........273
..4..16...36...81...225....625....1600.....4096.....10816......28561......74529
..6..36...90..225...825...3025....9240....28224.....93912.....312481.....997815
..9..81..225..625..3025..14641...53361...194481....815409....3418801...13359025
.12.144..420.1225..7315..43681..175560...705600...3503640...17397241...76934095
.16.256..784.2401.17689.130321..577600..2560000..15054400...88529281..443060401
.20.400.1260.3969.34713.303601.1432600..6760000..45648200..308248249.1680152229
.25.625.2025.6561.68121.707281.3553225.17850625.138415225.1073283121.6371392041

Examples

			Some solutions for n=4 k=3
..1..1..1....0..1..1....0..0..1....0..0..1....1..1..0....1..0..1....1..1..1
..1..1..1....1..0..1....1..0..1....0..0..1....0..0..1....1..0..1....1..1..1
..0..1..1....0..1..1....0..0..1....0..0..1....1..1..0....1..0..1....1..1..1
..0..1..1....1..0..1....0..0..1....0..0..1....0..0..1....0..0..1....1..0..1
		

Crossrefs

Column 1 is A002620(n+2)
Column 2 is A030179(n+2)
Column 3 is A207363
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207600

A208555 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 90, 81, 12, 26, 256, 330, 225, 144, 16, 42, 676, 1008, 1089, 420, 256, 20, 68, 1764, 3354, 3969, 2508, 784, 400, 25, 110, 4624, 10710, 16641, 10080, 5776, 1260, 625, 30, 178, 12100, 34884, 65025, 50052, 25600, 11020
Offset: 1

Views

Author

R. H. Hardin Feb 28 2012

Keywords

Comments

Table starts
..2...4....6....10.....16.....26......42.......68.......110........178
..4..16...36...100....256....676....1764.....4624.....12100......31684
..6..36...90...330...1008...3354...10710....34884....112530.....364722
..9..81..225..1089...3969..16641...65025...263169...1046529....4198401
.12.144..420..2508..10080..50052..221340..1042416...4742628...21989868
.16.256..784..5776..25600.150544..753424..4129024..21492496..115175824
.20.400.1260.11020..52000.351140.1913940.11836400..67894220..407225740
.25.625.2025.21025.105625.819025.4862025.33930625.214476025.1439823025

Examples

			Some solutions for n=4 k=3
..1..1..0....1..1..0....1..1..0....1..1..1....1..0..1....1..0..1....0..1..1
..1..0..0....0..1..0....0..1..0....1..1..0....0..1..0....1..0..1....0..1..1
..1..0..0....1..0..0....0..1..0....1..0..1....1..0..0....1..0..0....0..1..0
..1..0..0....0..1..0....0..1..0....1..1..0....0..1..0....1..0..0....0..1..0
		

Crossrefs

Column 1 is A002620(n+2)
Column 2 is A030179(n+2)
Column 3 is A207363
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A207454
Showing 1-3 of 3 results.