cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A208556 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529, 4198401, 16769025, 67125249, 268402689, 1073807361, 4294836225, 17180131329, 68718952449, 274878955521, 1099509530625, 4398050705409, 17592177655809, 70368760954881
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2012

Keywords

Comments

Row 4 of A208555.
It seems that all terms are squares. - Colin Barker, Mar 07 2018

Examples

			Some solutions for n=4:
..0..1..1..1....1..0..1..1....0..1..1..1....1..0..1..0....0..1..0..0
..1..0..1..0....0..1..1..0....0..1..0..1....0..1..1..1....1..0..1..1
..0..1..0..0....1..0..1..1....0..1..1..0....1..0..1..0....0..1..0..0
..1..0..1..0....0..1..1..0....0..1..0..0....0..1..0..1....1..0..1..1
		

Crossrefs

Cf. A208555.

Formula

Empirical: a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3).
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: 9*x*(1 + 6*x - 8*x^2) / ((1 - x)*(1 + 2*x)*(1 - 4*x)).
a(n) = (2^(n+1) + 1)^2 for n even.
a(n) = (2^(n+1) - 1)^2 for n odd.
(End)

A208550 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 16, 90, 1089, 10080, 150544, 1913940, 33930625, 544003170, 11177987076, 215177010048, 5033386477441, 112708053008152, 2958949185458176, 75387859827570360, 2195709810260687361, 62623865365172370000
Offset: 1

Views

Author

R. H. Hardin Feb 28 2012

Keywords

Comments

Diagonal of A208555.

Examples

			Some solutions for n=4
..1..0..1..0....0..1..1..0....0..1..1..1....0..1..0..0....1..0..1..1
..0..1..1..1....0..1..1..0....0..1..0..1....1..0..1..1....0..1..1..0
..1..0..1..0....0..1..0..0....0..1..1..0....0..1..0..0....1..0..1..1
..0..1..0..1....0..1..1..0....0..1..0..0....1..0..1..1....0..1..1..0
		

Crossrefs

Cf. A208555.

A208551 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

10, 100, 330, 1089, 2508, 5776, 11020, 21025, 35670, 60516, 94710, 148225, 218680, 322624, 454968, 641601, 873090, 1188100, 1570690, 2076481, 2680260, 3459600, 4376580, 5536609, 6884878, 8561476, 10489710, 12852225, 15544560, 18800896
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2012

Keywords

Comments

Column 4 of A208555.

Examples

			Some solutions for n=4:
..0..1..1..1....0..1..0..0....0..1..1..0....0..1..1..1....0..1..0..1
..0..1..1..0....1..0..1..1....0..1..0..1....0..1..0..1....1..0..1..1
..0..1..0..1....0..1..0..0....0..1..1..0....0..1..1..0....0..1..0..0
..0..1..1..0....1..0..1..1....0..1..0..1....0..1..0..0....1..0..1..1
		

Crossrefs

Cf. A208555.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(10 + 80*x + 90*x^2 + 129*x^3 + 60*x^4 + 4*x^5 - 24*x^6 + 6*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5). Colin Barker, Jul 03 2018

A208552 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

16, 256, 1008, 3969, 10080, 25600, 52000, 105625, 187200, 331776, 536256, 866761, 1310848, 1982464, 2851200, 4100625, 5670000, 7840000, 10502800, 14070001, 18364896, 23970816, 30614688, 39100009, 49023520, 61465600, 75852000, 93605625
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2012

Keywords

Comments

Column 5 of A208555.

Examples

			Some solutions for n=4:
..0..1..0..1..0....1..0..1..1..1....0..1..1..1..0....0..1..1..0..1
..0..1..1..0..0....0..1..0..1..0....1..1..1..1..0....1..0..1..1..1
..0..1..0..1..0....1..0..1..1..0....0..1..1..1..0....0..1..1..0..0
..0..1..1..0..0....0..1..0..1..0....1..1..0..1..0....1..0..1..1..0
		

Crossrefs

Cf. A208555.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(16 + 224*x + 432*x^2 + 1089*x^3 + 750*x^4 + 604*x^5 + 90*x^6 + 30*x^7 + 10*x^8 - 4*x^9 - 2*x^10 + x^11) / ((1 - x)^7*(1 + x)^5). - Colin Barker, Jul 04 2018

A208553 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

26, 676, 3354, 16641, 50052, 150544, 351140, 819025, 1634430, 3261636, 5853246, 10504081, 17449544, 28987456, 45403272, 71115489, 106340130, 159012100, 229010210, 329821921, 460490316, 642926736, 874503084, 1189491121, 1582286342
Offset: 1

Views

Author

R. H. Hardin Feb 28 2012

Keywords

Comments

Column 6 of A208555

Examples

			Some solutions for n=4
..0..1..0..1..0..1....1..0..1..0..1..0....1..1..1..1..0..1....0..1..0..1..0..1
..1..1..1..1..1..1....1..1..0..1..0..0....0..1..0..1..0..0....0..1..0..1..1..1
..0..1..0..1..0..1....1..0..1..0..1..0....0..1..1..1..0..0....0..1..0..1..0..0
..0..1..1..0..1..1....0..1..0..1..0..0....0..1..0..1..0..0....0..1..0..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A208554 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

42, 1764, 10710, 65025, 221340, 753424, 1913940, 4862025, 10332630, 21958596, 41363322, 77915929, 134523480, 232257600, 375406920, 606784689, 931373730, 1429596100, 2104920510, 3099260241, 4409811252, 6274540944, 8675694300
Offset: 1

Views

Author

R. H. Hardin Feb 28 2012

Keywords

Comments

Column 7 of A208555

Examples

			Some solutions for n=4
..1..1..1..1..0..1..0....1..1..0..1..0..1..0....1..1..0..1..0..1..0
..0..1..1..0..1..0..0....0..1..0..1..0..1..0....1..0..1..0..1..1..1
..0..1..0..1..0..1..0....0..1..0..1..0..1..0....0..1..0..1..0..1..0
..0..1..1..0..1..0..0....0..1..0..1..0..1..0....1..0..1..0..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16).
Empirical formula verified (see link). - Robert Israel, Sep 27 2018

A208557 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

12, 144, 420, 2508, 10080, 50052, 221340, 1042416, 4742628, 21989868, 100900800, 465657348, 2142175548, 9872120016, 45450619620, 209366048652, 964140982560, 4440671206788, 20451041895900, 94190120555184, 433792784654052
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2012

Keywords

Comments

Row 5 of A208555.

Examples

			Some solutions for n=4:
..1..1..0..1....0..1..1..0....0..1..1..0....1..0..1..0....1..1..0..1
..1..0..1..0....1..1..0..1....0..1..1..1....1..1..0..0....0..1..0..1
..0..1..0..0....0..1..1..0....0..1..0..0....1..0..1..0....1..1..0..1
..1..0..1..0....0..1..0..0....0..1..0..1....1..1..0..0....0..1..0..1
..0..1..0..0....0..1..1..0....0..1..0..0....1..0..1..0....1..1..0..1
		

Crossrefs

Cf. A208555.

Formula

Empirical: a(n) = a(n-1) + 17*a(n-2) + 6*a(n-3) - 36*a(n-4).
Empirical g.f.: 12*x*(1 + 11*x + 6*x^2 - 36*x^3) / ((1 + x - 3*x^2)*(1 - 2*x - 12*x^2)). - Colin Barker, Jul 04 2018

A208558 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

16, 256, 784, 5776, 25600, 150544, 753424, 4129024, 21492496, 115175824, 607129600, 3230330896, 17097131536, 90759997696, 480986635024, 2551443960976, 13527095526400, 71739070491664, 380392441337104, 2017207032035584
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2012

Keywords

Comments

Row 6 of A208555.

Examples

			Some solutions for n=4:
..0..1..0..1....0..1..1..1....1..0..1..0....1..0..1..0....0..1..0..0
..0..1..0..0....1..1..0..1....1..1..0..1....1..1..1..1....0..1..1..1
..0..1..0..1....0..1..0..1....1..0..1..0....1..0..1..0....0..1..0..0
..0..1..0..0....1..1..0..1....1..1..0..0....1..1..1..1....0..1..1..1
..0..1..0..1....0..1..0..1....1..0..1..0....1..0..1..0....0..1..0..0
..0..1..0..0....0..1..0..0....0..1..0..0....1..0..1..0....0..1..1..0
		

Crossrefs

Cf. A208555.

Formula

Empirical: a(n) = 4*a(n-1) +12*a(n-2) -27*a(n-3).
Empirical g.f.: 16*x*(1 + 12*x - 27*x^2) / ((1 + 3*x)*(1 - 7*x + 9*x^2)). - Colin Barker, Jul 04 2018

A208559 Number of 7 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

20, 400, 1260, 11020, 52000, 351140, 1913940, 11836400, 67894220, 407225740, 2378376000, 14112662980, 82952260180, 490344818000, 2888730695340, 17052623706380, 100542287612000, 593228737061860, 3498693917381460
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2012

Keywords

Comments

Row 7 of A208555.

Examples

			Some solutions for n=4:
..0..1..0..0....0..1..1..1....0..1..0..1....0..1..0..1....1..1..0..1
..1..1..0..1....1..0..1..0....0..1..0..0....0..1..1..0....1..0..1..1
..0..1..0..0....0..1..1..1....0..1..0..0....0..1..0..0....1..1..0..0
..0..1..0..0....1..0..1..0....0..1..0..0....0..1..1..0....1..0..1..1
..0..1..0..0....0..1..1..1....0..1..0..0....0..1..0..0....0..1..0..0
..0..1..0..0....1..0..1..0....0..1..0..0....0..1..1..0....1..0..1..1
..0..1..0..0....0..1..0..0....0..1..0..0....0..1..0..0....0..1..0..0
		

Crossrefs

Cf. A208555.

Formula

Empirical: a(n) = a(n-1) + 31*a(n-2) + 12*a(n-3) - 144*a(n-4).
Empirical g.f.: 20*x*(1 + 19*x + 12*x^2 - 144*x^3) / (1 - x - 31*x^2 - 12*x^3 + 144*x^4). - Colin Barker, Jul 05 2018
Showing 1-9 of 9 results.