A207380 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.
0, 3, 10, 21, 42, 70, 122, 187, 298, 443, 667, 957, 1401, 1960, 2775, 3828, 5295, 7167, 9745, 12998, 17380, 22915, 30196, 39347, 51274, 66126, 85209, 108942, 139055, 176273, 223148, 280733, 352623, 440646, 549597, 682411, 845852, 1044084, 1286512, 1579582
Offset: 0
Keywords
Examples
For n = 5 the three views of the three-dimensional shell model of partitions with 5 shells look like this: . . A066186(5) = 35 A006128(5) = 20 . . 1 1 1 1 1 5 . 1 1 1 1 1 3 2 . 1 1 1 1 1 4 1 . 1 1 1 1 1 2 2 1 . 1 1 1 1 1 3 1 1 . 1 1 1 1 1 2 1 1 1 . 1 1 1 1 1 1 1 1 1 1 . . . 7 6 4 2 1 . 1 2 3 2 . 1 1 2 . 1 1 . 1 . . A000217(5) = 15 . The areas of the shadows of the three views are A066186(5) = 35, A006128(5) = 20 and A000217(5) = 15, therefore the total area of the three shadows is 35+20+15 = 70, so a(5) = 70.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, n] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2]+g[1]] fi end: a:= n-> n*b(n, n)[1] +b(n, n)[2] +n*(n+1)/2: seq (a(n), n=0..50); # Alois P. Heinz, Mar 22 2012
-
Mathematica
b[n_, i_] := b[n, i] = Module[{f, g}, If [n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; Join[f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]] ]]]; a[n_] := n*b[n, n][[1]] + b[n, n][[2]] + n*(n+1)/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Mar 22 2012
Comments