A207381 Total sum of the odd-indexed parts of all partitions of n.
1, 3, 7, 14, 25, 45, 72, 117, 180, 275, 403, 596, 846, 1206, 1681, 2335, 3183, 4342, 5820, 7799, 10321, 13622, 17798, 23221, 30009, 38706, 49567, 63316, 80366, 101805, 128211, 161134, 201537, 251495, 312508, 387535, 478674, 590072, 724920, 888795, 1086324
Offset: 1
Keywords
Examples
For n = 5, write the partitions of 5 and below write the sums of their odd-indexed parts: . 5 . 3+2 . 4+1 . 2+2+1 . 3+1+1 . 2+1+1+1 . 1+1+1+1+1 . ------------ . 20 + 4 + 1 = 25 The total sum of the odd-indexed parts is 25 so a(5) = 25.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local g, h; if n=0 then [1, 0$2] elif i<1 then [0$3] else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i)); [g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]] fi end: a:= n-> b(n,n)[3]: seq(a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
-
Mathematica
b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0 , {1, 0, 0}, If[i < 1, {0, 0, 0}, g = b[n, i - 1]; h = If[i > n, {0, 0, 0}, b[n - i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]]; a[n_] := b[n, n][[3]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Dec 09 2016 after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Mar 12 2012
Comments