cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207381 Total sum of the odd-indexed parts of all partitions of n.

Original entry on oeis.org

1, 3, 7, 14, 25, 45, 72, 117, 180, 275, 403, 596, 846, 1206, 1681, 2335, 3183, 4342, 5820, 7799, 10321, 13622, 17798, 23221, 30009, 38706, 49567, 63316, 80366, 101805, 128211, 161134, 201537, 251495, 312508, 387535, 478674, 590072, 724920, 888795, 1086324
Offset: 1

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

For more information see A206563.

Examples

			For n = 5, write the partitions of 5 and below write the sums of their odd-indexed parts:
.    5
.    3+2
.    4+1
.    2+2+1
.    3+1+1
.    2+1+1+1
.    1+1+1+1+1
.  ------------
.   20 + 4 + 1 = 25
The total sum of the odd-indexed parts is 25 so a(5) = 25.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0$2]
        elif i<1 then [0$3]
        else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i));
             [g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]]
          fi
        end:
    a:= n-> b(n,n)[3]:
    seq(a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{g, h}, If[n == 0 , {1, 0, 0}, If[i < 1, {0, 0, 0},  g = b[n, i - 1]; h = If[i > n, {0, 0, 0}, b[n - i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]]; a[n_] := b[n, n][[3]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Dec 09 2016 after Alois P. Heinz *)

Formula

a(n) = A066186(n) - A207382(n) = A066897(n) + A207382(n).

Extensions

More terms from Alois P. Heinz, Mar 12 2012