cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207382 Sum of the even-indexed parts of all partitions of n.

Original entry on oeis.org

0, 1, 2, 6, 10, 21, 33, 59, 90, 145, 213, 328, 467, 684, 959, 1361, 1866, 2588, 3490, 4741, 6311, 8422, 11067, 14579, 18941, 24630, 31703, 40788, 52019, 66315, 83891, 106034, 133182, 167045, 208397, 259637, 321895, 398498, 491295, 604725, 741579, 908008
Offset: 1

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

Also the sum of the floors of half the parts of all partitions of n, because the sum of one kind for a partition equals the sum of the other kind for the conjugate partition. Furthermore, this generalizes to taking m-th indices and dividing by m. - George Beck, Apr 15 2017

Examples

			For n = 5, write the partitions of 5 and below write the sums of their even-indexed parts:
. 5
. 3+2
. 4+1
. 2+2+1
. 3+1+1
. 2+1+1+1
. 1+1+1+1+1
------------
.   8 + 2   = 10
The sum of the even-indexed parts is 10, so a(5) = 10.
From _George Beck_, Apr 15 2017: (Start)
Alternatively, sum the floors of the parts divided by 2:
. 2
. 1+1
. 2+0
. 1+1+0
. 1+0+0
. 1+0+0+0
. 0+0+0+0+0
The sum is 10, so a(5) = 10. (End)
		

Crossrefs

For more information see A206563.

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0$2]
        elif i<1 then [0$3]
        else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i));
             [g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]]
          fi
        end:
    a:= n-> b(n,n)[2]:
    seq (a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0, 0}, i<1, {0, 0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
    a[n_]:= Total@Flatten@Quotient[IntegerPartitions[n], 2];
    Table [a[n], {n, 1, 50}] (* George Beck, Apr 15 2017 *)

Formula

a(n) = A066186(n) - A207381(n) = A207381(n) - A066897(n).

Extensions

More terms from Alois P. Heinz, Mar 12 2012