A207382 Sum of the even-indexed parts of all partitions of n.
0, 1, 2, 6, 10, 21, 33, 59, 90, 145, 213, 328, 467, 684, 959, 1361, 1866, 2588, 3490, 4741, 6311, 8422, 11067, 14579, 18941, 24630, 31703, 40788, 52019, 66315, 83891, 106034, 133182, 167045, 208397, 259637, 321895, 398498, 491295, 604725, 741579, 908008
Offset: 1
Keywords
Examples
For n = 5, write the partitions of 5 and below write the sums of their even-indexed parts: . 5 . 3+2 . 4+1 . 2+2+1 . 3+1+1 . 2+1+1+1 . 1+1+1+1+1 ------------ . 8 + 2 = 10 The sum of the even-indexed parts is 10, so a(5) = 10. From _George Beck_, Apr 15 2017: (Start) Alternatively, sum the floors of the parts divided by 2: . 2 . 1+1 . 2+0 . 1+1+0 . 1+0+0 . 1+0+0+0 . 0+0+0+0+0 The sum is 10, so a(5) = 10. (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local g, h; if n=0 then [1, 0$2] elif i<1 then [0$3] else g:= b(n, i-1); h:= `if`(i>n, [0$3], b(n-i, i)); [g[1]+h[1], g[2]+h[3], g[3]+h[2]+i*h[1]] fi end: a:= n-> b(n,n)[2]: seq (a(n), n=1..50); # Alois P. Heinz, Mar 12 2012
-
Mathematica
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0, 0}, i<1, {0, 0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[3]], g[[3]] + h[[2]] + i*h[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *) a[n_]:= Total@Flatten@Quotient[IntegerPartitions[n], 2]; Table [a[n], {n, 1, 50}] (* George Beck, Apr 15 2017 *)
Extensions
More terms from Alois P. Heinz, Mar 12 2012
Comments