A207391 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 98, 64, 10, 21, 196, 271, 200, 100, 12, 31, 441, 834, 643, 350, 144, 14, 46, 961, 2307, 2356, 1271, 556, 196, 16, 68, 2116, 6115, 7561, 5348, 2239, 826, 256, 18, 100, 4624, 16544, 23071, 19319, 10570, 3641, 1168, 324, 20, 147
Offset: 1
Examples
Some solutions for n=4 k=3 ..1..0..0....0..0..0....0..1..1....1..1..1....1..1..1....1..0..1....1..0..1 ..0..0..0....0..1..1....1..1..0....1..1..1....1..0..1....1..0..1....0..1..1 ..1..0..0....0..1..1....1..1..1....1..1..1....1..1..1....1..0..1....0..1..1 ..0..0..0....0..1..1....1..1..1....1..1..1....1..1..1....1..0..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..480
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (2/15)*n^5 + (55/12)*n^4 + (101/6)*n^3 + (5/12)*n^2 - (299/30)*n + 2
k=6: a(n) = (1/36)*n^6 + (113/60)*n^5 + (151/9)*n^4 + (95/4)*n^3 - (605/36)*n^2 - (229/30)*n + 3
k=7: a(n) = (1/210)*n^7 + (103/180)*n^6 + (197/20)*n^5 + (1439/36)*n^4 + (293/20)*n^3 - (3469/90)*n^2 + (157/105)*n + 3
Comments