cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207392 Number of 3Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

6, 36, 98, 271, 834, 2307, 6115, 16544, 44250, 116526, 307117, 808976, 2122787, 5564987, 14588870, 38216326, 100064540, 261992129, 685862456, 1795255303, 4698927663, 12298716264, 32188880680, 84245176534, 220486127041
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 3 of A207391

Examples

			Some solutions for n=4
..1..0..0..0....1..1..1..1....1..1..1..1....0..0..0..0....0..0..0..0
..1..0..1..1....0..0..0..0....1..1..1..1....0..1..1..1....0..1..1..0
..1..0..1..1....0..1..1..1....1..1..1..1....0..1..1..0....0..1..1..0
		

Formula

Empirical: a(n) = 3*a(n-1) -2*a(n-2) +9*a(n-3) -15*a(n-4) -21*a(n-6) +16*a(n-7) +11*a(n-8) +27*a(n-9) +2*a(n-10) -12*a(n-12) -a(n-13) -2*a(n-14) +2*a(n-15)

A207388 Number of n X 5 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 834, 2356, 5348, 10570, 18972, 31710, 50162, 75944, 110926, 157248, 217336, 293918, 390040, 509082, 654774, 831212, 1042874, 1294636, 1591788, 1940050, 2345588, 2815030, 3355482, 3974544, 4680326, 5481464, 6387136, 7407078, 8551600
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 5 of A207391.

Examples

			Some solutions for n=4:
..1..0..1..1..0....0..0..0..0..0....1..0..0..0..0....0..1..1..1..0
..1..1..1..0..0....0..1..1..1..1....0..1..1..0..1....1..1..0..1..1
..1..1..1..1..0....0..1..1..0..0....1..1..1..0..1....1..1..1..1..0
..1..1..1..1..0....0..1..1..1..1....1..1..1..0..1....1..1..0..1..1
		

Crossrefs

Cf. A207391.

Formula

Empirical: a(n) = (2/15)*n^5 + (55/12)*n^4 + (101/6)*n^3 + (5/12)*n^2 - (299/30)*n + 2.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: 2*x*(7 + 56*x - 66*x^2 + 6*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A207389 Number of n X 6 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

21, 441, 2307, 7561, 19319, 42167, 82477, 148743, 251937, 405885, 627663, 938013, 1361779, 1928363, 2672201, 3633259, 4857549, 6397665, 8313339, 10672017, 13549455, 17030335, 21208901, 26189615, 32087833, 39030501, 47156871, 56619237
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 6 of A207391.

Examples

			Some solutions for n=4:
..0..0..0..0..0..0....0..0..0..0..0..0....1..1..1..1..1..1....1..1..0..0..0..0
..0..1..1..1..0..1....1..1..1..1..1..0....1..1..1..1..0..1....1..0..1..1..0..1
..0..1..1..0..0..0....1..1..0..1..1..0....1..1..1..1..1..1....1..1..1..1..0..1
..0..1..1..0..0..0....1..1..1..1..1..0....1..1..1..1..0..1....1..1..1..1..0..1
		

Crossrefs

Cf. A207391.

Formula

Empirical: a(n) = (1/36)*n^6 + (113/60)*n^5 + (151/9)*n^4 + (95/4)*n^3 - (605/36)*n^2 - (229/30)*n + 3.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: x*(21 + 294*x - 339*x^2 - 62*x^3 + 139*x^4 - 36*x^5 + 3*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A207390 Number of n X 7 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

31, 961, 6115, 23071, 65955, 158217, 335915, 651531, 1178343, 2015377, 3292963, 5178919, 7885387, 11676345, 16875819, 23876819, 33151023, 45259233, 60862627, 80734831, 105774835, 137020777, 175664619, 223067739, 280777463, 350544561
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Column 7 of A207391.

Examples

			Some solutions for n=4:
..0..1..1..1..1..0..0....0..1..1..1..0..0..0....1..1..0..1..1..0..1
..0..1..1..1..0..0..0....0..0..0..0..0..0..0....1..1..0..0..0..0..0
..0..1..1..1..1..0..0....0..0..0..0..0..0..0....1..1..0..1..1..0..1
..0..1..1..1..1..0..0....0..0..0..0..0..0..0....1..1..0..1..1..0..1
		

Crossrefs

Cf. A207391.

Formula

Empirical: a(n) = (1/210)*n^7 + (103/180)*n^6 + (197/20)*n^5 + (1439/36)*n^4 + (293/20)*n^3 - (3469/90)*n^2 + (157/105)*n + 3.
Conjectures from Colin Barker, Jun 22 2018: (Start)
G.f.: x*(31 + 713*x - 705*x^2 - 677*x^3 + 961*x^4 - 341*x^5 + 45*x^6 - 3*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A207393 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

8, 64, 200, 643, 2356, 7561, 23071, 72410, 223804, 678174, 2060069, 6253794, 18886989, 56994221, 172026022, 518680170, 1563104966, 4710798095, 14194683842, 42764679095, 128836561789, 388135277342, 1169254115920, 3522329560926
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 4 of A207391

Examples

			Some solutions for n=4
..1..1..0..0....1..1..1..1....0..1..1..1....1..1..1..1....1..0..1..1
..1..0..0..0....1..1..1..1....0..0..0..0....1..0..0..0....0..1..1..1
..1..1..0..0....1..1..1..1....0..1..1..0....1..1..1..1....1..1..1..1
..1..0..0..0....1..1..1..1....0..0..0..0....1..0..0..0....1..1..1..1
		

Formula

Empirical: a(n) = 5*a(n-1) -8*a(n-2) +19*a(n-3) -54*a(n-4) +51*a(n-5) -64*a(n-6) +169*a(n-7) -78*a(n-8) +62*a(n-9) -265*a(n-10) +27*a(n-11) -41*a(n-12) +277*a(n-13) +16*a(n-14) +40*a(n-15) -162*a(n-16) -31*a(n-17) -10*a(n-18) +41*a(n-19) +13*a(n-20) -6*a(n-22)

A207394 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

10, 100, 350, 1271, 5348, 19319, 65955, 232892, 806886, 2731598, 9282799, 31515158, 106316099, 358441563, 1208892830, 4071575656, 13706136778, 46144638323, 155319797404, 522698327881, 1759064945909, 5919715175612, 19920381011276
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 5 of A207391

Examples

			Some solutions for n=4
..1..0..1..1....0..1..1..0....1..1..1..0....1..0..0..0....0..1..1..1
..0..0..0..0....0..1..1..1....1..1..0..0....1..1..1..0....1..1..1..0
..1..0..1..1....0..1..1..1....1..1..1..0....1..0..0..0....0..1..1..0
..0..0..0..0....0..1..1..1....1..1..1..0....1..1..0..0....0..1..1..0
..1..0..1..1....0..1..1..1....1..1..1..0....1..0..0..0....0..1..1..0
		

Formula

Empirical: a(n) = 6*a(n-1) -13*a(n-2) +37*a(n-3) -117*a(n-4) +173*a(n-5) -295*a(n-6) +711*a(n-7) -732*a(n-8) +936*a(n-9) -2073*a(n-10) +1402*a(n-11) -1672*a(n-12) +3654*a(n-13) -1481*a(n-14) +2262*a(n-15) -4159*a(n-16) +901*a(n-17) -2155*a(n-18) +2729*a(n-19) -143*a(n-20) +1111*a(n-21) -900*a(n-22) -104*a(n-23) -297*a(n-24) +174*a(n-25) +22*a(n-26) +48*a(n-27) -24*a(n-28)

A207395 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

12, 144, 556, 2239, 10570, 42167, 158217, 616386, 2348280, 8718366, 32527713, 121179612, 448121671, 1656554267, 6126075658, 22616670998, 83456777796, 308017759907, 1136469054610, 4192305708517, 15465595040747, 57051037851614
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 6 of A207391

Examples

			Some solutions for n=4
..0..1..1..0....0..0..0..0....0..1..1..0....0..1..1..1....0..1..1..1
..1..0..1..1....0..1..1..1....0..1..1..0....1..0..1..1....0..1..1..0
..1..0..1..1....0..0..0..0....0..1..1..0....0..1..1..1....0..1..1..1
..1..0..1..1....0..1..1..0....0..1..1..0....1..0..1..1....0..1..1..1
..1..0..1..1....0..1..1..0....0..1..1..0....1..0..1..1....0..1..1..1
..1..0..1..1....0..1..1..0....0..1..1..0....1..0..1..1....0..1..1..1
		

Formula

Empirical: a(n) = 7*a(n-1) -18*a(n-2) +55*a(n-3) -200*a(n-4) +369*a(n-5) -674*a(n-6) +1854*a(n-7) -2594*a(n-8) +3352*a(n-9) -8455*a(n-10) +8966*a(n-11) -8626*a(n-12) +23465*a(n-13) -17866*a(n-14) +13584*a(n-15) -43963*a(n-16) +20792*a(n-17) -14014*a(n-18) +54787*a(n-19) -10215*a(n-20) +8428*a(n-21) -43050*a(n-22) -3791*a(n-23) -2916*a(n-24) +21630*a(n-25) +6143*a(n-26) +1316*a(n-27) -7216*a(n-28) -2448*a(n-29) -381*a(n-30) +1354*a(n-31) +446*a(n-32) -120*a(n-34)

A207396 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 826, 3641, 18972, 82477, 335915, 1424240, 5887228, 23664574, 95673277, 385982750, 1544370231, 6178516519, 24726844456, 98762900758, 394298390750, 1574547834937, 6285202997898, 25083924670973, 100115382776031
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Row 7 of A207391

Examples

			Some solutions for n=4
..0..0..0..0....0..1..1..1....1..0..1..1....1..0..0..0....1..0..1..1
..0..1..1..1....1..1..1..0....0..1..1..0....0..0..0..0....1..0..0..0
..0..1..1..0....0..1..1..0....1..0..1..1....1..0..0..0....1..0..1..1
..0..1..1..1....0..1..1..0....0..1..1..0....0..0..0..0....1..0..1..1
..0..1..1..1....0..1..1..0....1..0..1..1....1..0..0..0....1..0..1..1
..0..1..1..1....0..1..1..0....0..1..1..0....0..0..0..0....1..0..1..1
..0..1..1..1....0..1..1..0....1..1..1..0....1..0..0..0....1..0..1..1
		

Formula

Empirical: a(n) = 8*a(n-1) -25*a(n-2) +87*a(n-3) -344*a(n-4) +794*a(n-5) -1760*a(n-6) +5012*a(n-7) -9140*a(n-8) +15432*a(n-9) -36527*a(n-10) +54057*a(n-11) -74296*a(n-12) +159065*a(n-13) -190500*a(n-14) +223692*a(n-15) -455635*a(n-16) +426177*a(n-17) -452516*a(n-18) +887167*a(n-19) -598448*a(n-20) +627183*a(n-21) -1155951*a(n-22) +477387*a(n-23) -595363*a(n-24) +979858*a(n-25) -156812*a(n-26) +404429*a(n-27) -538940*a(n-28) -30128*a(n-29) -210752*a(n-30) +195269*a(n-31) +39309*a(n-32) +76259*a(n-33) -44043*a(n-34) -13520*a(n-35) -15052*a(n-36) +6012*a(n-37) +1836*a(n-38) +1440*a(n-39) -720*a(n-40)

A207387 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 16, 98, 643, 5348, 42167, 335915, 2975974, 27237128, 254712604, 2518233755, 25906520150, 274611244775, 3028044205471, 34585700854386
Offset: 1

Views

Author

R. H. Hardin Feb 17 2012

Keywords

Comments

Diagonal of A207391

Examples

			Some solutions for n=4
..1..0..1..1....0..1..1..1....1..0..1..1....1..0..0..0....0..1..1..0
..0..1..1..0....0..0..0..0....1..0..1..1....0..1..1..0....0..0..0..0
..1..1..1..1....0..1..1..0....1..0..1..1....1..0..0..0....0..1..1..0
..0..1..1..1....0..0..0..0....1..0..1..1....1..1..1..0....0..1..1..0
		
Showing 1-9 of 9 results.