A207403 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 12, 81, 102, 64, 10, 16, 144, 289, 216, 100, 12, 20, 256, 612, 729, 390, 144, 14, 25, 400, 1296, 1782, 1521, 636, 196, 16, 30, 625, 2340, 4356, 4212, 2809, 966, 256, 18, 36, 900, 4225, 8910, 11664, 8692, 4761, 1392, 324, 20, 42, 1296
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..0..0....1..1..1....1..1..0....0..1..0....0..0..0....1..1..0....0..0..0 ..1..0..0....1..1..1....1..0..1....1..1..0....0..1..0....0..0..0....0..1..0 ..0..0..0....1..1..1....1..0..0....1..1..0....0..0..0....0..1..0....0..0..0 ..0..0..0....1..1..1....1..0..1....1..1..0....0..0..0....0..1..0....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1512
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = n^4 + 6*n^3 + 7*n^2 - 6*n + 1
k=5: a(n) = (1/3)*n^5 + 3*n^4 + (28/3)*n^3 + 7*n^2 - (29/3)*n + 2
k=6: a(n) = (1/9)*n^6 + (4/3)*n^5 + (58/9)*n^4 + (40/3)*n^3 + (49/9)*n^2 - (44/3)*n + 4
k=7: a(n) = (1/36)*n^7 + (4/9)*n^6 + (53/18)*n^5 + (91/9)*n^4 + (589/36)*n^3 + (31/9)*n^2 - (58/3)*n + 6
Comments