cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A207918 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 13, 81, 98, 100, 16, 19, 169, 271, 358, 256, 26, 28, 361, 665, 1309, 1152, 676, 42, 41, 784, 1675, 4181, 5371, 3910, 1764, 68, 60, 1681, 4344, 13759, 21145, 23637, 12994, 4624, 110, 88, 3600, 11081, 46800, 86255, 117835
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4.....6......9......13.......19........28.........41..........60
..4...16....36.....81.....169......361.......784.......1681........3600
..6...36....98....271.....665.....1675......4344......11081.......28136
.10..100...358...1309....4181....13759.....46800.....156135......518564
.16..256..1152...5371...21145....86255....366330....1520815.....6276388
.26..676..3910..23637..117835...612439...3327954...17621905....92785236
.42.1764.12994.101069..628945..4105063..28188778..187980955..1245595210
.68.4624.43596.438103.3426491.28280693.247024548.2088382007.17532981294

Examples

			Some solutions for n=4 k=3
..1..1..1....1..1..0....0..0..1....1..1..0....1..1..1....0..0..1....0..0..1
..1..1..1....0..0..1....0..0..1....1..0..0....1..1..1....0..1..1....1..0..0
..0..1..0....0..0..1....0..0..1....1..0..0....1..1..1....0..1..0....1..1..0
..0..1..0....1..0..0....1..1..1....0..1..1....1..1..1....0..1..0....0..1..1
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207462
Row 1 is A000930(n+3)
Row 2 is A207170
Row 3 is A207306

A207519 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 14, 81, 98, 100, 16, 21, 196, 271, 358, 256, 26, 31, 441, 834, 1307, 1152, 676, 42, 46, 961, 2307, 5458, 5369, 3910, 1764, 68, 68, 2116, 6115, 19909, 29622, 23645, 12994, 4624, 110, 100, 4624, 16544, 68807, 137719, 174224
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Table starts
..2....4.....6......9......14.......21........31.........46..........68
..4...16....36.....81.....196......441.......961.......2116........4624
..6...36....98....271.....834.....2307......6115......16544.......44250
.10..100...358...1307....5458....19909.....68807.....243954......851870
.16..256..1152...5369...29622...137719....600283....2713480....12034046
.26..676..3910..23645..174224..1048423...5849409...34086388...194127326
.42.1764.12994.101233..991184..7666319..54373655..406281454..2956097240
.68.4624.43596.439063.5723716.57113109.516879019.4964342828.46263548214

Examples

			Some solutions for n=4 k=3
..0..0..0....0..0..0....0..1..1....1..1..0....1..0..0....0..0..0....1..1..1
..0..0..0....0..0..0....1..0..0....0..0..0....1..0..1....0..1..1....1..1..1
..1..0..1....0..0..0....1..0..0....0..0..0....1..0..1....1..1..1....1..1..1
..1..0..1....1..1..1....1..1..0....0..1..1....1..0..1....1..0..0....1..1..1
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207462
Column 4 is A207463
Row 1 is A038718(n+2)
Row 2 is A207069
Row 3 is A207392

A208698 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 14, 81, 98, 100, 16, 22, 196, 271, 358, 256, 26, 35, 484, 844, 1309, 1152, 676, 42, 56, 1225, 2706, 5524, 5371, 3910, 1764, 68, 90, 3136, 8977, 24086, 30160, 23637, 12994, 4624, 110, 145, 8100, 30168, 109599, 177488, 177872
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Table starts
..2....4.....6......9......14.......22.........35..........56...........90
..4...16....36.....81.....196......484.......1225........3136.........8100
..6...36....98....271.....844.....2706.......8977.......30168.......102384
.10..100...358...1309....5524....24086.....109599......506870......2376964
.16..256..1152...5371...30160...177488....1103081.....6990922.....45002090
.26..676..3910..23637..177872..1415508...12014735...104356568....923279444
.42.1764.12994.101069.1016258.10934750..126827983..1510509752..18362140414
.68.4624.43596.438103.5893862.85697362.1356513169.22125222702.369223577680

Examples

			Some solutions for n=4 k=3
..0..1..0....0..0..0....1..0..1....0..0..0....1..1..0....1..1..1....0..0..0
..0..0..0....0..0..0....0..0..0....0..1..1....0..0..0....1..1..1....0..0..0
..1..0..1....1..0..1....0..0..0....0..1..1....0..0..0....0..1..0....1..1..0
..1..0..1....1..0..1....0..1..1....0..1..0....0..1..1....0..1..0....1..1..0
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207462
Column 4 is A207914
Row 1 is A001611(n+2)
Row 2 is A207436
Row 3 is A207939
Showing 1-3 of 3 results.