A207472 Let a(1) = 5. For n > 1, a(n) is the least number greater than a(n-1) such that the Hamming distance D(a(n-1),a(n)) = 5.
5, 26, 33, 62, 66, 93, 96, 127, 135, 152, 163, 188, 192, 223, 225, 254, 270, 273, 294, 313, 320, 351, 353, 382, 390, 409, 418, 445, 449, 478, 480, 511, 543, 545, 574, 578, 605, 608, 639, 647, 664, 675, 700, 704, 735, 737, 766, 782, 785, 806, 825, 832, 863, 865
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[1] = 5; a[n_] := a[n] = Module[{k = a[n - 1], m = a[n-1] + 1}, While[DigitCount[BitXor[k, m], 2, 1] != 5, m++]; m]; Array[a, 100] (* Amiram Eldar, Aug 06 2023 *)
Comments