A207536 Triangle of coefficients of polynomials u(n,x) jointly generated with A105070; see Formula section.
1, 1, 2, 1, 6, 1, 12, 4, 1, 20, 20, 1, 30, 60, 8, 1, 42, 140, 56, 1, 56, 280, 224, 16, 1, 72, 504, 672, 144, 1, 90, 840, 1680, 720, 32, 1, 110, 1320, 3696, 2640, 352, 1, 132, 1980, 7392, 7920, 2112, 64, 1, 156, 2860, 13728, 20592, 9152, 832, 1, 182, 4004
Offset: 1
Examples
First seven rows: 1; 1, 2; 1, 6, 1, 12, 4; 1, 20, 20, 1, 30, 60, 8; 1, 42, 140, 56; From _Philippe Deléham_, Apr 08 2012: (Start) (1, 0, 1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 6, 0, 0; 1, 12, 4, 0, 0; 1, 20, 20, 0, 0, 0; 1, 30, 60, 8, 0, 0, 0; 1, 42, 140, 56, 0, 0, 0, 0; (End)
Crossrefs
Cf. A105070.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] v[n_, x_] := u[n - 1, x] + v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207536 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A105070 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x)/(1-2*x+x^2-2*y*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = A034839(n,k)*2^k = binomial(n,2*k)*2^k . (End)
Comments