cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207536 Triangle of coefficients of polynomials u(n,x) jointly generated with A105070; see Formula section.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 12, 4, 1, 20, 20, 1, 30, 60, 8, 1, 42, 140, 56, 1, 56, 280, 224, 16, 1, 72, 504, 672, 144, 1, 90, 840, 1680, 720, 32, 1, 110, 1320, 3696, 2640, 352, 1, 132, 1980, 7392, 7920, 2112, 64, 1, 156, 2860, 13728, 20592, 9152, 832, 1, 182, 4004
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

Subtriangle of the triangle given by (1, 0, 1, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 08 2012

Examples

			First seven rows:
  1;
  1,  2;
  1,  6,
  1, 12,   4;
  1, 20,  20,
  1, 30,  60,  8;
  1, 42, 140, 56;
From _Philippe Deléham_, Apr 08 2012: (Start)
(1, 0, 1, 0, 0, 0, 0, ...) DELTA (0, 2, -2, 0, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,   0;
  1,  6,   0,  0;
  1, 12,   4,  0, 0;
  1, 20,  20,  0, 0, 0;
  1, 30,  60,  8, 0, 0, 0;
  1, 42, 140, 56, 0, 0, 0, 0; (End)
		

Crossrefs

Cf. A105070.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207536 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A105070 *)

Formula

u(n,x) = u(n-1,x) + 2x*v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x)/(1-2*x+x^2-2*y*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = A034839(n,k)*2^k = binomial(n,2*k)*2^k . (End)