cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A207584 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 60, 144, 312, 612, 1250, 2516, 4968, 9796, 19256, 37740, 73704, 143810, 280340, 545664, 1061676, 2064584, 4012968, 7798252, 15150258, 29428972, 57157720, 111001924, 215555184, 418562876, 812728688, 1578038530, 3063930012
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 3 of A207589.

Examples

			Some solutions for n=4:
..1..1..1....0..1..1....0..1..1....0..1..0....1..1..1....1..1..0....1..0..0
..0..1..0....1..0..1....1..0..1....1..0..0....1..0..0....0..1..0....1..1..1
..1..0..0....0..1..0....1..1..0....0..1..0....0..1..1....1..0..0....0..1..1
..0..1..0....1..1..1....0..1..1....1..0..0....1..1..0....0..1..0....1..0..0
		

Crossrefs

Cf. A207589.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + 4*a(n-3) - 2*a(n-4) - a(n-5) - 8*a(n-6) + a(n-7) - 3*a(n-8) + 3*a(n-9) -2 *a(n-10) - a(n-12) for n>14.
Empirical g.f.: 2*x*(3 + 15*x + 9*x^2 + 12*x^3 - 12*x^4 - 3*x^5 - 23*x^6 + 18*x^7 - 8*x^8 + 15*x^9 - 12*x^10 + 3*x^11 - 3*x^12 + 2*x^13) / ((1 - x - x^3)*(1 - x^2 - 4*x^3 - 2*x^4 - 2*x^5 + 2*x^6 - x^7 - x^9)). - Colin Barker, Mar 05 2018

A207590 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 60, 144, 324, 756, 1728, 3996, 9180, 21168, 48708, 112212, 258336, 594972, 1369980, 3154896, 7264836, 16729524, 38524032, 88712604, 204284700, 470422512, 1083276612, 2494544148, 5744373984, 13228006428, 30461128380, 70145147664
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 3 of A207589.

Examples

			Some solutions for n=4:
..0..1..1..0....1..1..0..0....1..1..0..1....0..1..1..1....1..1..1..1
..1..0..1..0....1..0..1..0....0..1..1..1....1..0..1..0....1..0..1..0
..0..1..0..0....0..1..1..0....1..0..1..0....0..1..0..1....0..1..0..1
		

Crossrefs

Cf. A207589.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) for n>4.
Conjectures from Colin Barker, Mar 05 2018: (Start)
G.f.: 6*x*(1 + 5*x + x^2 - 4*x^3) / (1 - x - 3*x^2).
a(n) = (2^(1-n)*((1-sqrt(13))^n*(-35+13*sqrt(13)) + (1+sqrt(13))^n*(35+13*sqrt(13)))) / (9*sqrt(13)) for n>2.
(End)

A207583 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 60, 432, 3094, 25776, 263550, 3832616, 69396520, 1475600124, 38962584092, 1441585611138, 67002761499928, 3878723937334928, 264400592646069420, 24784751879627310504, 3083505379073129163384, 470186218198870776234068
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Diagonal of A207589

Examples

			Some solutions for n=4
..0..1..1..0....1..1..0..0....0..1..1..0....1..1..1..1....1..0..1..0
..1..0..1..1....1..0..1..0....1..0..1..0....1..0..1..1....1..1..0..1
..0..1..0..0....0..1..0..0....1..1..0..0....0..1..0..0....0..1..1..0
..1..0..1..0....1..1..1..0....0..1..1..0....0..1..1..0....1..0..1..1
		

A207585 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

10, 100, 144, 432, 1014, 2232, 5000, 11220, 25392, 54436, 120350, 264846, 571576, 1256072, 2715892, 5908344, 12871320, 27788516, 60537606, 131084800, 283976596, 617015956, 1334446520, 2896207628, 6276299562, 13590377602, 29485253424
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 4 of A207589

Examples

			Some solutions for n=4
..1..0..1..1....1..0..1..0....0..1..0..0....0..1..0..1....1..0..1..1
..0..1..0..1....0..1..0..0....1..0..1..1....1..0..1..1....1..1..0..1
..1..0..1..0....1..1..1..0....1..1..1..0....0..1..0..0....0..1..1..0
..0..1..0..1....1..0..1..0....0..1..0..0....1..1..0..1....1..0..1..1
		

Formula

Empirical: a(n) = 3*a(n-2) +12*a(n-3) -3*a(n-4) -12*a(n-5) -61*a(n-6) -4*a(n-7) -a(n-8) +197*a(n-9) +12*a(n-10) +109*a(n-11) -375*a(n-12) +7*a(n-13) -346*a(n-14) +564*a(n-15) -75*a(n-16) +480*a(n-17) -607*a(n-18) +105*a(n-19) -355*a(n-20) +466*a(n-21) -36*a(n-22) +101*a(n-23) -288*a(n-24) -9*a(n-25) +21*a(n-26) +129*a(n-27) +a(n-28) -18*a(n-29) -42*a(n-30) +2*a(n-32) +9*a(n-33) -a(n-36) for n>38

A207586 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

16, 256, 324, 1098, 3094, 7272, 18150, 46716, 116932, 285200, 697034, 1720944, 4216816, 10262124, 25016808, 61035720, 148655892, 361558434, 879459498, 2139482884, 5202203050, 12645158420, 30736681900, 74709969008, 181571105898
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 5 of A207589

Examples

			Some solutions for n=4
..1..1..1..0..0....0..1..1..0..0....1..1..0..1..0....1..0..1..0..0
..0..1..0..1..1....1..0..1..1..1....1..0..1..0..0....0..1..0..1..1
..1..0..1..0..1....0..1..0..1..0....0..1..0..1..0....1..0..1..0..1
..1..0..1..1..0....0..1..1..0..0....1..0..1..1..0....0..1..0..1..0
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +16*a(n-3) -8*a(n-4) -a(n-5) -125*a(n-6) +12*a(n-7) -59*a(n-8) +561*a(n-9) +15*a(n-10) +394*a(n-11) -1588*a(n-12) -30*a(n-13) -1252*a(n-14) +3110*a(n-15) -240*a(n-16) +2220*a(n-17) -4681*a(n-18) +1113*a(n-19) -2172*a(n-20) +5890*a(n-21) -2305*a(n-22) +689*a(n-23) -6463*a(n-24) +2868*a(n-25) +1071*a(n-26) +5999*a(n-27) -2424*a(n-28) -1723*a(n-29) -4358*a(n-30) +1491*a(n-31) +1167*a(n-32) +2335*a(n-33) -642*a(n-34) -411*a(n-35) -928*a(n-36) +157*a(n-37) +60*a(n-38) +289*a(n-39) -3*a(n-40) +6*a(n-41) -71*a(n-42) -9*a(n-43) -3*a(n-44) +12*a(n-45) +2*a(n-46) -a(n-48) for n>50

A207587 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

26, 676, 756, 3150, 9698, 25776, 70800, 204476, 596068, 1584596, 4380740, 12246186, 33356536, 92744054, 250622912, 689213304, 1904187516, 5145503610, 14195771862, 38697328208, 105556471730, 290374890184, 787938050420, 2162268321240
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 6 of A207589

Examples

			Some solutions for n=4
..0..1..0..1..0..0....1..1..0..1..1..1....1..1..1..0..1..1....1..1..0..1..0..0
..1..0..1..0..1..1....0..1..1..0..1..0....0..1..0..1..0..0....1..0..1..0..1..0
..1..1..1..1..1..1....1..0..1..1..0..0....1..0..1..1..1..0....0..1..0..1..1..0
..0..1..0..1..0..0....1..1..0..1..1..0....1..0..1..0..1..0....0..1..1..1..0..0
		

A207588 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

42, 1764, 1728, 8244, 30056, 85536, 263550, 876860, 2830656, 8637716, 26358144, 82906122, 259356680, 797032056, 2446151996, 7564283208, 23414818812, 72062481458, 221435203512, 682319992200, 2103278142776, 6472523087596
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 7 of A207589

Examples

			Some solutions for n=4
..1..0..1..0..1..0..0....1..1..1..1..1..1..0....1..0..1..0..1..1..0
..0..1..0..1..0..1..1....1..0..1..0..1..0..1....1..1..1..1..0..1..0
..1..0..1..0..1..0..1....0..1..0..1..0..1..1....0..1..0..1..1..0..0
..0..1..0..1..0..1..0....0..1..0..1..0..1..0....1..0..1..0..1..0..0
		

A207591 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 144, 432, 1098, 3150, 8244, 23202, 61560, 171468, 458640, 1269144, 3412944, 9402156, 25378560, 69694632, 188620632, 516830904, 1401394608, 3833746488, 10409369472, 28443841344, 77305743936, 211065666624, 574042728672
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 4 of A207589.

Examples

			Some solutions for n=4:
  0 1 1 0     0 1 0 0     1 0 1 1     1 0 1 1     0 1 1 0
  1 0 1 1     1 0 1 1     0 1 1 1     0 1 0 1     1 0 1 0
  0 1 0 0     1 1 1 0     1 1 0 0     1 0 1 0     1 1 0 0
  1 0 1 0     0 1 0 0     1 0 1 0     0 1 0 1     0 1 1 0
		

Crossrefs

Cf. A207589.

Formula

Empirical: a(n) = 8*a(n-2) + 2*a(n-3) - 10*a(n-4) + 2*a(n-6) for n>8.
Empirical g.f.: 9*x*(1 - x)*(1 + 10*x + 18*x^2 - 8*x^3 - 22*x^4 + 2*x^5 + 4*x^6) / (1 - 8*x^2 - 2*x^3 + 10*x^4 - 2*x^6). - Colin Barker, Jun 24 2018

A207592 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 312, 1014, 3094, 9698, 30056, 93782, 291304, 908102, 2822456, 8795098, 27344824, 85186790, 264915456, 825119802, 2566427032, 7992283078, 24862380608, 77416150058, 240852113528, 749890083670, 2333208210944, 7263866039898
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 5 of A207589.

Examples

			Some solutions for n=4:
  1 0 1 0     1 1 1 1     1 0 1 0     1 0 1 1     0 1 1 1
  0 1 0 0     1 0 1 1     1 1 1 0     1 1 1 1     1 0 1 1
  1 1 1 0     0 1 0 0     0 1 0 0     0 1 0 0     1 1 0 0
  1 0 1 0     1 0 1 1     1 0 1 0     1 0 1 0     0 1 1 0
  0 1 0 0     0 1 0 0     0 1 0 0     1 1 1 0     1 0 1 0
		

Crossrefs

Cf. A207589.

Formula

Empirical: a(n) = -a(n-1) + 11*a(n-2) + 13*a(n-3) - 18*a(n-4) - 18*a(n-5) + 6*a(n-6) + 4*a(n-7) for n>9.
Empirical g.f.: 13*x*(1 + 14*x + 26*x^2 - 54*x^3 - 99*x^4 + 66*x^5 + 86*x^6 - 20*x^7 - 16*x^8) / ((1 + x)*(1 - 11*x^2 - 2*x^3 + 20*x^4 - 2*x^5 - 4*x^6)). - Colin Barker, Jun 24 2018

A207593 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

18, 324, 612, 2232, 7272, 25776, 85536, 300096, 1004364, 3501756, 11782620, 40900716, 138145104, 477983232, 1619007480, 5587936560, 18968405364, 65343675996, 222184777860, 764259590844, 2602091320056, 8940128392080
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 6 of A207589.

Examples

			Some solutions for n=4:
  1 0 1 1     1 1 0 0     0 1 0 1     0 1 0 0     0 1 1 1
  0 1 0 1     0 1 1 0     1 1 1 0     1 0 1 0     1 1 0 1
  1 0 1 0     1 0 1 0     1 0 1 1     1 1 1 0     1 0 1 0
  0 1 0 1     0 1 0 0     0 1 0 0     0 1 0 0     0 1 1 0
  1 1 1 0     1 0 1 0     1 0 1 1     1 0 1 0     1 1 0 0
  1 0 1 0     1 0 1 0     0 1 1 0     1 1 0 0     1 0 1 0
		

Crossrefs

Cf. A207589.

Formula

Empirical: a(n) = -a(n-1) + 16*a(n-2) + 18*a(n-3) - 61*a(n-4) - 61*a(n-5) + 66*a(n-6) + 58*a(n-7) - 8*a(n-8) - 8*a(n-9) for n>11.
Empirical g.f.: 18*x*(1 + 19*x + 36*x^2 - 148*x^3 - 279*x^4 + 399*x^5 + 594*x^6 - 368*x^7 - 410*x^8 + 44*x^9 + 52*x^10) / (1 + x - 16*x^2 - 18*x^3 + 61*x^4 + 61*x^5 - 66*x^6 - 58*x^7 + 8*x^8 + 8*x^9). - Colin Barker, Jun 24 2018
Showing 1-10 of 11 results. Next