A207599 T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 15, 81, 90, 64, 10, 25, 225, 225, 168, 100, 12, 40, 625, 825, 441, 270, 144, 14, 64, 1600, 3025, 1995, 729, 396, 196, 16, 104, 4096, 9240, 9025, 3915, 1089, 546, 256, 18, 169, 10816, 28224, 30400, 21025, 6765, 1521, 720, 324, 20, 273
Offset: 1
Examples
Some solutions for n=4 k=3 ..1..0..1....1..0..0....0..0..1....1..0..0....1..1..0....1..0..0....1..1..0 ..1..1..0....0..0..1....0..0..1....0..1..1....1..0..1....1..0..0....0..1..1 ..1..0..0....0..0..1....0..0..1....0..0..1....1..0..0....1..0..0....0..1..1 ..1..0..0....0..0..1....0..0..1....0..0..1....1..0..0....1..0..0....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1250
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 12*n^2 - 6*n
k=4: a(n) = 36*n^2 - 36*n + 9
k=5: a(n) = 30*n^3 + 15*n^2 - 45*n + 15
k=6: a(n) = 25*n^4 + 50*n^3 - 25*n^2 - 50*n + 25
k=7: a(n) = 120*n^4 + 40*n^3 - 200*n^2 + 80*n
Comments