A207605 Triangle of coefficients of polynomials u(n,x) jointly generated with A106195; see the Formula section.
1, 2, 4, 1, 8, 4, 1, 16, 12, 5, 1, 32, 32, 18, 6, 1, 64, 80, 56, 25, 7, 1, 128, 192, 160, 88, 33, 8, 1, 256, 448, 432, 280, 129, 42, 9, 1, 512, 1024, 1120, 832, 450, 180, 52, 10, 1, 1024, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 2048, 5120, 6912, 6400, 4424, 2364, 985, 316, 75, 12, 1
Offset: 1
Examples
First five rows: 1 2 4 1 8 4 1 16 12 5 1 32 32 18 6 1 First four polynomials u(n,x): 1, 2, 4 + x, 8 + 4x + x^2. (1, 1, 0, 0, 0, ...) DELTA (0, 0, 1, 0, 0, ...) begins: 1 1, 0 2, 0, 0 4, 1, 0, 0 8, 4, 1, 0, 0 16, 12, 5, 1, 0, 0 32, 32, 18, 6, 1, 0, 0. - _Philippe Deléham_, Mar 22 2012
Links
- G. C. Greubel, Rows n = 1..102 of the triangle, flattened
Programs
-
Maple
CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)): T := (n,k) -> binomial(n, k)*hypergeom([-k,n-k], [-n], x): P := [seq(add(simplify(T(n,k)),k=0..n), n=0..11)]: seq(CoeffList(p), p in P); # Peter Luschny, Feb 16 2018
-
Mathematica
(* First program *) u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207605 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A106195 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 2^(n+1), If[k==n, 1, 2*T[n-1, k] + T[n-1, k-1] - T[n-2, k-1] ]]]; Join[{1}, Table[T[n, k], {n,0,10}, {k,0,n}]]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x) def a(n): return Poly(u(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif k == 0: return 2^(n+1) elif k == n: return 1 else: return 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) [1]+[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020
Formula
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(1,0) = 1, T(2,0) = 2, T(2,1) = 0. - Philippe Deléham, Mar 22 2012
G.f.: x*y*(1-x*y)/(1-x*y-2*x+x^2*y). - R. J. Mathar, Aug 11 2015
T(n,k) = [x^k] Sum_{k=0..n} binomial(n, k)*hypergeom([-k, n-k], [-n], x). - Peter Luschny, Feb 16 2018
Sum_{k=1..n} T(n,k) = Fibonacci(2*n-1), n >= 1, = (-1)^(n-1)*A099496(n-1). - G. C. Greubel, Mar 15 2020
Comments