cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207605 Triangle of coefficients of polynomials u(n,x) jointly generated with A106195; see the Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 1, 16, 12, 5, 1, 32, 32, 18, 6, 1, 64, 80, 56, 25, 7, 1, 128, 192, 160, 88, 33, 8, 1, 256, 448, 432, 280, 129, 42, 9, 1, 512, 1024, 1120, 832, 450, 180, 52, 10, 1, 1024, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 2048, 5120, 6912, 6400, 4424, 2364, 985, 316, 75, 12, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Row sums: 1,2,5,13,... (odd-indexed Fibonacci numbers).
Alternating row sums: 1,2,3,5,... (Fibonacci numbers).
Subtriangle of the triangle given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012

Examples

			First five rows:
   1
   2
   4   1
   8   4   1
  16  12   5   1
  32  32  18   6   1
First four polynomials u(n,x): 1, 2, 4 + x, 8 + 4x + x^2.
(1, 1, 0, 0, 0, ...) DELTA (0, 0, 1, 0, 0, ...) begins:
   1
   1,  0
   2,  0,  0
   4,  1,  0,  0
   8,  4,  1,  0,  0
  16, 12,  5,  1,  0,  0
  32, 32, 18,  6,  1,  0,  0. - _Philippe Deléham_, Mar 22 2012
		

Crossrefs

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):
    T := (n,k) -> binomial(n, k)*hypergeom([-k,n-k], [-n], x):
    P := [seq(add(simplify(T(n,k)),k=0..n), n=0..11)]:
    seq(CoeffList(p), p in P); # Peter Luschny, Feb 16 2018
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207605 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A106195 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 2^(n+1), If[k==n, 1, 2*T[n-1, k] + T[n-1, k-1] - T[n-2, k-1] ]]]; Join[{1}, Table[T[n, k], {n,0,10}, {k,0,n}]]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif k == 0: return 2^(n+1)
        elif k == n: return 1
        else: return 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1)
    [1]+[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020

Formula

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(1,0) = 1, T(2,0) = 2, T(2,1) = 0. - Philippe Deléham, Mar 22 2012
G.f.: x*y*(1-x*y)/(1-x*y-2*x+x^2*y). - R. J. Mathar, Aug 11 2015
T(n,k) = [x^k] Sum_{k=0..n} binomial(n, k)*hypergeom([-k, n-k], [-n], x). - Peter Luschny, Feb 16 2018
Sum_{k=1..n} T(n,k) = Fibonacci(2*n-1), n >= 1, = (-1)^(n-1)*A099496(n-1). - G. C. Greubel, Mar 15 2020