A207606 Triangle of coefficients of polynomials u(n,x) jointly generated with A207607; see the Formula section.
1, 2, 3, 2, 4, 7, 2, 5, 16, 11, 2, 6, 30, 36, 15, 2, 7, 50, 91, 64, 19, 2, 8, 77, 196, 204, 100, 23, 2, 9, 112, 378, 540, 385, 144, 27, 2, 10, 156, 672, 1254, 1210, 650, 196, 31, 2, 11, 210, 1122, 2640, 3289, 2366, 1015, 256, 35, 2, 12, 275, 1782, 5148, 8008
Offset: 1
Examples
First five rows: 1; 2; 3, 2; 4, 7, 2; 5, 16, 11, 2; Triangle (2, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, ...), 0 <= k <= n, begins: 1; 2, 0; 3, 2, 0; 4, 7, 2, 0; 5, 16, 11, 2, 0; 6, 30, 36, 15, 2, 0; 7, 50, 91, 64, 19, 2, 0; 8, 77, 196, 204, 100, 23, 2, 0;
Links
- G. C. Greubel, Rows n = 1..101 of the triangle, flattened
Crossrefs
Cf. A207607.
Programs
-
Maple
T:= proc(n, k) option remember; if k<0 or k>n then 0 elif k=0 then n+2 elif k=n then 2 else 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) fi; end: 1, seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Mar 15 2020
-
Mathematica
(* First program *) u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207606 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207607 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, n+2, If[k==n, 2, 2*T[n-1, k] - T[n-2, k] + T[n-1, k-1] ]]]; Join[{1}, Table[T[n, k], {n, 0, 10}, {k, 0, n}]]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x) def a(n): return Poly(u(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif (k==1): return n+1 elif (k==n): return 2 else: return 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) [1]+[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 15 2020
Formula
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.
As triangle T(n,k) with 0 <= k <= n: g.f.: (1-y*x)/(1-(2+y)*x+x^2). - Philippe Deléham, Mar 03 2012
As triangle T(n,k) with 0 <= k <= n: Sum_{k=0..n} T(n,k)*x^k = A132677(n), A000034(n)*A057077(n), A057079(n), A000027(n+1), A001519(n+1), A001075(n), A002310(n), A038725(n), A172968(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Mar 03 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Mar 03 2012
T(n,k) = C(n+k-1,2*k+1) + 2*C(n+k-1,2*k), where C is binomial. - Yuchun Ji, May 23 2019
Comments