A207610 Triangle of coefficients of polynomials u(n,x) jointly generated with A207611; see the Formula section.
1, 2, 4, 1, 7, 3, 1, 12, 7, 3, 1, 20, 15, 8, 3, 1, 33, 30, 19, 9, 3, 1, 54, 58, 42, 23, 10, 3, 1, 88, 109, 89, 55, 27, 11, 3, 1, 143, 201, 182, 125, 69, 31, 12, 3, 1, 232, 365, 363, 273, 166, 84, 35, 13, 3, 1, 376, 655, 709, 579, 383, 212, 100, 39, 14, 3, 1, 609
Offset: 1
Examples
First five rows: 1 2 4...1 7...3...1 12...7...3...1
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207610 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207611 *)
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1 def a(n): return Poly(u(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
Formula
u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=u(n-1,x)+x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1.