cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207611 Triangle of coefficients of polynomials v(n,x) jointly generated with A207610; see Formula section.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 8, 8, 5, 2, 1, 13, 15, 11, 6, 2, 1, 21, 28, 23, 14, 7, 2, 1, 34, 51, 47, 32, 17, 8, 2, 1, 55, 92, 93, 70, 42, 20, 9, 2, 1, 89, 164, 181, 148, 97, 53, 23, 10, 2, 1, 144, 290, 346, 306, 217, 128, 65, 26, 11, 2, 1, 233, 509, 653, 619, 472
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Column 1: Fibonacci numbers, A000045
Column 2: A029907
Row sums: A003945.
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012

Examples

			First five rows:
  1;
  2, 1;
  3, 2, 1;
  5, 4, 2, 1;
  8, 8, 5, 2, 1;
From _Philippe Deléham_, Mar 25 2012: (Start)
(0, 2, -1/2, -1/2, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, ...) begins:
  1;
  0,  1;
  0,  2,  1;
  0,  3,  2,  1;
  0,  5,  4,  2,  1;
  0,  8,  8,  5,  2,  1;
  0, 13, 15, 11,  6,  2,  1;
  0, 21, 28, 23, 14,  7,  2,  1; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207610 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A207611 *)
    T[ n_, k_] := Which[k<0 || n<0, 0, n<2, Boole[k<=n] + Boole[k==0&&n==1], True, T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* Michael Somos, Sep 19 2024 *)
  • PARI
    {T(n, k) = if(k<0 || n<0, 0, n<2, (k<=n) + (k==0 && n==1), T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* Michael Somos, Sep 19 2024 */
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
    

Formula

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + (n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(1,0) = T(2,1) = 1, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k >= n.