A207611 Triangle of coefficients of polynomials v(n,x) jointly generated with A207610; see Formula section.
1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 8, 8, 5, 2, 1, 13, 15, 11, 6, 2, 1, 21, 28, 23, 14, 7, 2, 1, 34, 51, 47, 32, 17, 8, 2, 1, 55, 92, 93, 70, 42, 20, 9, 2, 1, 89, 164, 181, 148, 97, 53, 23, 10, 2, 1, 144, 290, 346, 306, 217, 128, 65, 26, 11, 2, 1, 233, 509, 653, 619, 472
Offset: 1
Examples
First five rows: 1; 2, 1; 3, 2, 1; 5, 4, 2, 1; 8, 8, 5, 2, 1; From _Philippe Deléham_, Mar 25 2012: (Start) (0, 2, -1/2, -1/2, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, ...) begins: 1; 0, 1; 0, 2, 1; 0, 3, 2, 1; 0, 5, 4, 2, 1; 0, 8, 8, 5, 2, 1; 0, 13, 15, 11, 6, 2, 1; 0, 21, 28, 23, 14, 7, 2, 1; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207610 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207611 *) T[ n_, k_] := Which[k<0 || n<0, 0, n<2, Boole[k<=n] + Boole[k==0&&n==1], True, T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* Michael Somos, Sep 19 2024 *)
-
PARI
{T(n, k) = if(k<0 || n<0, 0, n<2, (k<=n) + (k==0 && n==1), T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* Michael Somos, Sep 19 2024 */
-
Python
from sympy import Poly from sympy.abc import x def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1 def a(n): return Poly(v(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
Formula
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + (n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(1,0) = T(2,1) = 1, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k >= n.
Comments