A207616 Triangle of coefficients of polynomials u(n,x) jointly generated with A207617; see the Formula section.
1, 2, 4, 1, 7, 4, 11, 11, 1, 16, 25, 6, 22, 50, 22, 1, 29, 91, 63, 8, 37, 154, 154, 37, 1, 46, 246, 336, 129, 10, 56, 375, 672, 375, 56, 1, 67, 550, 1254, 957, 231, 12, 79, 781, 2211, 2211, 781, 79, 1, 92, 1079, 3718, 4719, 2288, 377, 14, 106, 1456, 6006
Offset: 1
Examples
First five rows: 1 2 4 1 7 4 11 11 1
Links
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207616 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207617 *)
Formula
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + v(n-1,x) + 1, where u(1,x) = 1, v(1,x) = 1.
Comments