A207622 Triangle of coefficients of polynomials u(n,x) jointly generated with A207623; see the Formula section.
1, 2, 4, 2, 7, 8, 11, 22, 4, 16, 50, 24, 22, 100, 88, 8, 29, 182, 252, 64, 37, 308, 616, 296, 16, 46, 492, 1344, 1032, 160, 56, 750, 2688, 3000, 896, 32, 67, 1100, 5016, 7656, 3696, 384, 79, 1562, 8844, 17688, 12496, 2528, 64, 92, 2158, 14872, 37752
Offset: 1
Examples
First five rows: 1 2 4 2 7 8 11 22 4
Links
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207622 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207623 *)
Formula
u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = 2*x*u(n-1,x) + v(n-1,x) + 1, where u(1,x) = 1, v(1,x) = 1.
Comments