cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207634 Triangle of coefficients of polynomials v(n,x) jointly generated with A207633; see Formula section.

Original entry on oeis.org

1, 2, 3, 3, 6, 6, 5, 13, 15, 12, 8, 26, 41, 36, 24, 13, 50, 95, 115, 84, 48, 21, 94, 210, 300, 302, 192, 96, 34, 173, 443, 740, 871, 760, 432, 192, 55, 314, 905, 1716, 2353, 2392, 1856, 960, 384, 89, 563, 1803, 3823, 5916, 6987, 6312, 4432, 2112, 768
Offset: 1

Views

Author

Clark Kimberling, Feb 24 2012

Keywords

Comments

Column 1: Fibonacci numbers, A000045.

Examples

			First five rows:
1
2...3
3...6....6
5...13...15...12
8...26...41...36...24
		

Crossrefs

Cf. A207633.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207633 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207634 *)

Formula

u(n,x)=u(n-1,x)+v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.