cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207650 Squares that can be written as a sum of 3 distinct nonzero squares in 3 or more ways.

Original entry on oeis.org

441, 529, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1764, 1849, 2025, 2116, 2209, 2401, 2601, 2809, 2916, 3025, 3249, 3364, 3481, 3721, 3844, 3969, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476, 5625, 5929, 6084, 6241, 6561, 6724, 6889, 7056, 7225, 7396
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    t = Sort@Select[Flatten[Table[x^2 + y^2 + z^2, {x, 400}, {y, x + 1, 400}, {z, y + 1, 400}]], # < 160006 && IntegerQ[Sqrt[#]] &];
    f1[l_] := Module[{t = {}}, Do[If[l[[n]] != l[[n + 1]] && l[[n]] != l[[n - 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    f2[l_] := Module[{t = {}}, Do[If[l[[n]] == l[[n + 1]], AppendTo[t, l[[n]]]], {n, Length[l] - 1}]; t];
    s1 = Join[{First[t]}, f1[t]];
    Complement[t, s1];
    t = f2[t];
    s2 = Join[{First[t]}, f1[t]];
    Complement[t, s2]