cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207652 G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1)/(1 - x^k).

Original entry on oeis.org

1, 1, 3, 10, 45, 249, 1709, 13912, 131168, 1402706, 16757321, 221018769, 3188425939, 49925523804, 843121969923, 15272776193787, 295372123082865, 6073931908657770, 132329525329523223, 3044691799670213778, 73771773281455834427, 1877511491197391256001
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 45*x^4 + 249*x^5 + 1709*x^6 +...
such that, by definition,
A(x) = 1 + ((1+x)-1)/(1-x) + ((1+x)-1)*((1+x)^2-1)/((1-x)*(1-x^2)) + ((1+x)-1)*((1+x)^2-1)*((1+x)^3-1)/((1-x)*(1-x^2)*(1-x^3)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,((1+x)^k-1)/(1-x^k +x*O(x^n)) )),n)}
    for(n=0,40,print1(a(n),", "))

Formula

From Vaclav Kotesovec, Oct 31 2014: (Start)
a(n) ~ 6*sqrt(2) * 12^n * n! / (exp(Pi^2/24) * Pi^(2*n+2)).
a(n) ~ 12^(n+1) * n^(n+1/2) / (exp(n + Pi^2/24) * Pi^(2*n+3/2)).
(End)