A207669 Numbers that match polynomials irreducible (mod 3), with coefficients in {0,1,2}.
3, 4, 5, 6, 7, 8, 10, 14, 17, 20, 22, 25, 34, 35, 38, 41, 43, 46, 49, 53, 58, 59, 65, 67, 71, 73, 77, 79, 86, 89, 92, 94, 97, 101, 110, 115, 118, 121, 125, 134, 137, 139, 145, 149, 151, 158, 166, 169, 172, 181, 185, 188, 190, 197, 205, 209, 212, 214, 217
Offset: 1
Keywords
Examples
Polynomials having coefficients in {0,1,2} are enumerated by the positive integers as follows: n ... p[n,x] .. irreducible (mod 3) 1 ... 1 ....... no 2 ... 2 ....... no 3 ... x ....... yes 4 ... x+1 ..... yes 5 ... x+2 ..... yes 6 ... 2x ...... yes 7 ... 2x+1 .... yes 8 ... 2x+2 .... yes 9 ... x^2 ..... no 10 .. x^2+1 ... yes 11 .. x^2+2 ... no The least n for which p(n,x) is irreducible over the rationals but not modulo 3 is 13; the factorization of p(13,x) is (x+1)(x+2) (mod 3).
Programs
-
Mathematica
t = Table[IntegerDigits[n, 3], {n, 1, 1000}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] Table[p[n, x], {n, 1, 15}] u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x], Modulus -> 3], AppendTo[u, n]], {n, 1, 400}] u (* A207669 *) Complement[Range[200], %] (* A207670 *) b[n_] := FromDigits[IntegerDigits[u, 3][[n]]] Table[b[n], {n, 1, 50}] (* A207671 *)
Comments