A207675 Numbers such that not all divisors occur in their Collatz trajectories.
9, 15, 18, 21, 27, 30, 33, 35, 36, 39, 42, 45, 51, 54, 55, 57, 60, 63, 66, 69, 70, 72, 75, 77, 78, 81, 84, 85, 87, 90, 91, 93, 95, 96, 99, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 121, 123, 125, 126, 129, 132, 133, 135, 138, 140, 141, 143, 144, 145
Offset: 1
Keywords
Examples
3 is a divisor of 9, not occurring in A033479 - therefore 9 is a term.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Haskell
import Data.List (intersect) a207675 n = a207675_list !! (n-1) a207675_list = filter (\x -> a027750_row x `intersect` a070165_row x /= a027750_row x) [1..]
-
Mathematica
coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]; Select[Range[145],Complement[Divisors[#],coll[#]]!={}&] (* Jayanta Basu, May 27 2013 *)